• Title/Summary/Keyword: Integrated Flight Test

Search Result 80, Processing Time 0.03 seconds

Development of Integrated Ground Support System for Integrated Flight Test of Small UAVs (무인항공기의 통합비행시험을 위한 통합형 지상지원시스템 개발)

  • Jeong, Jae-Hyeon;Lim, Byoung-Do;Kim, Sung-Su;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.800-806
    • /
    • 2012
  • This paper proposes design and development of the Integrated Ground Support System (IGSS) for the flight test of the Unmanned Aerial Vehicle (UAV), which combines ground support and ground control. The integrated flight test of the UAV is a necessary procedure to validate the functionality of the Unmanned Aerial System (UAS). In order to execute cost-effective and systematic flight tests, the IGSS is regarded as an inevitable infrastructure of UAS for small laboratories. The proposed IGSS has functions of ground control, radio communication, power generation, transportation and the maintenance of the UAV.

Development of Low-Cost Automatic Flight Control System for Unmanned Target Drone

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.367-371
    • /
    • 2004
  • This paper describes development of automatic flight control system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated now days use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of automatic flight control system is verified by flight test.

  • PDF

Study on Integrated-Flight Simulation Method Using CFT Imagery (탑재비행시험 영상을 적용한 통합비행 시뮬레이션 기법 연구)

  • Jeong, Dong Gil;Yun, Hyo Seok;Park, Jin Hyen
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.111-117
    • /
    • 2018
  • It is indispensable for a missile to track a target under the flight condition since the tracking capability affects the system performance considerably. The best way to verify the tracker's performance is flight test while it costs too much. Consequently, captive flight test or CFT has an important role in the development of a missile system. CFT, however, cannot simulate missile dynamics and is an offline and open-loop test. In this paper, we propose a new integrated-flight simulation(IFS) method using CFT imagery to overcome the limitation of synthetic image-based IFS method. This method increases the utilization of CFT's outputs and compensates the reality of imagery which lacks in the synthetic image-based IFS. Using this method make it possible to verify the system capability in various simulation modes.

Design of a Low-Cost Attitude Determination GPS/INS Integrated Navigation System for a UAV (Unmanned Aerial Vehicle) (무인 비행체용 저가의 ADGPS/INS 통합 항법 시스템)

  • Oh Sang Heon;Lee Sang Jeong;Park Chansik;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.633-643
    • /
    • 2005
  • An unmanned aerial vehicle (UAV) is an aircraft controlled by .emote commands from ground station and/o. pre-programmed onboard autopilot system. A navigation system in the UAV provides a navigation data for a flight control computer(FCC). The FCC requires accurate and reliable position, velocity and attitude information for guidance and control. This paper proposes an ADGPS/INS integrated navigation system for a UAV. The proposed navigation system comprises an attitude determination GPS (ADGPS) receive., a navigation computer unit, and a low-cost commercial MEMS inertial measurement unit(IMU). The navigation algorithm contains a fault detection and isolation (FDI) function fur integrity. In order to evaluate the performance of the proposed navigation system, two flight tests were preformed using a small aircraft. The first flight test was carried out to confirm fundamental operation of the proposed navigation system and to check the effectiveness of the FDI algorithm. In the second flight test, the navigation performance and the benefit of the GPS attitude information were checked in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation system gives a reliable performance even when anomalous GPS data is provided and better navigation performance than a conventional GPS/INS integration unit.

Implementation and Flight Test Performance Analysis of vSLAM Aided Integrated Navigation System for Rotary UAV (vSLAM 보조 통합항법시스템 구현 및 무인 회전익기를 이용한 비행시험 성능분석)

  • Yun, Suk-Chang;Lee, Byoung-Jin;Yun, Suk-Hwan;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.362-369
    • /
    • 2011
  • In this paper, vSLAM aided integrated navigation system is implemented and performance analysis of the system is completed via flight test. The system can suppress divergence of position error of INS only system by updating vSLAM correction information when temporary GPS signal outage occurs in bad radio condition. In the flight test, integrated hardware containing GPS, IMU and camera is loaded under RC electric helicopter. Performance of the integrated navigation system is verified by comparing estimated position of INS/vSLAM system with that of INS only system.

The Effect of an Installation Angle of IMFP sensors on Estimation of Altitude of T-50 Aircraft in the Transonic Region (IMFP 장착각도가 T-50 초음속 고도정보에 미치는 영향)

  • Nam, Yong-seog;Kim, Yeon-hi;Song, Seok-bong;Kim, Seong-jun
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • The flight control of the T-50 advanced trainer is conducted by the digital FBW (Flight-by-Wire) control system. The system input data consist of flight conditions such as altitude, airspeed, and angle of attack. And the flight conditions of the aircraft are obtained from IMFP (Integrated Multi-Function Probe). The T-50 aircraft equip three IMFP sensors. To ensure reliability in flight condition data obtained from each IMFP sensor, the mean value of flight conditions is used as the input of the control system. In this study, the effect of an installation angle of IMFP sensors on estimation of flight altitude was investigated by flight test results in the supersonic region.

  • PDF

Ground Test and Evaluation of a Flight Control Systemfor Unmanned Aerial Vehicles

  • Suk, Jin-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • UAV(Unmanned Aerial Vehicle) has become one of the most popularmilitary/commercial aerial robots in the new millennium. In spite of all theadvantages that UAVs inherently have, it is not an easv job to develop a UAVbecause it requires very systematic and complete approaches in full developmentenvelop. The ground test and evaluation phase has the utmost importance in thesense that a well-developed system can be best verified on the ground. In addition,many of the aircraft crashes in the flight tests were resulted from the incompletedevelopment procedure. In this research, a verification procedure of the wholeairbome integrated system was conducted including the flight management system.An airbome flight control computer(FCC) senses the extemal environment from thepehpheral devices and sends the control signal to the actuating system using theassigned control logic and flight test strategy. A ground test station controls themission during the test while the downlink data are transferred from the flightmanagement computer using the serial communication interface. The pilot controlbox also applies additional manual actuating commands. The whole system wastested/verified on the wind-tunnel system, which gave a good pitch controlperformance with a preUspecified flight test procedure. The ground test systemguarantees the performance of fundamental functions of airbome electronic systemfor the future flight tests.

Validity Study of Questionnaire Items of the Pilot Aptitude Personality Test (조종적성인성검사 문항개발 타당도 연구)

  • Yoon, Youkyung;Park, Seikwon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • The pilot aptitude test so far has been conducted with a dichotomous concept of cognitive factor and non-cognitive factor, so it was not easy to explain concrete factors about pilot aptitude. Therefore, an integrated approach is needed to construct pilot aptitude test including all factors that can predict pilot aptitude. In previous study, we developed questionnaire items for the Pilot Aptitude Personality Test(PAPT) which can predict the flight training achievement through personality and personal characteristics. And those items were categorized as personality, cognition, and motivation factors. The flight training grades were correlated with all the test factors of the items, and the cognitive factors were high. As a result of the regression analysis, the total score of the three factors together accounted for 16% of the flight training grades. The results of the ANOVA showed that the cognition factors and motivation factors had significant effects on the completion of the flight training. The factors of PAPT predicted not only the completion of the flight training but also the flight performance. This is because the existing paper-pencil pilot aptitude test can only discriminate the flight training completion status. This is also a result of the fact that the introductory flight training consists of various factors including not only basic cognition but also personality and motivation.

An Attitude Determination GPS and INS Integration Scheme: Design and Flight Experiment (자세측정용 GPS/INS 통합시스템 구성 및 비행 시험)

  • Kim, Jeong Won;Hwang, Dong-Hwan;Lee, Sang Jeong;Park, Chansik;Oh, Sang Heon;Kim, Se Hwan;Ahn, Lee-Ki;Lee, Jang-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.112-119
    • /
    • 2004
  • This paper proposes an attitude determination GPS/INS integrated system scheme for a UAV and presents experimental flight test results. The proposed system is designed as a part of an autopilot system and comprises a GPS attitude determination receiver, an off-the-shelf inertial measurement unit (IMU), and a navigation computer unit (NCU). UAV requires accurate attitude information for stable automatic flight control. The proposed system can provide accurate attitude information for the flight control computer (FCC) so that stable automatic flight control can be achieved. In order to verify the performance of the proposed scheme, an integrated navigation system has been developed. In order to evaluate the developed navigation system, the flight test has been performed. In the flight test, the developed system was shown to provide the position, the velocity and the attitude satisfactorily enough for stable flight control. The accuracy of the attitude information of the developed system was confirmed by comparing attitude of vertical gyro.

  • PDF

FLIGHT SOFTWARE DEVELOPMENT FOR HAUSAT-2 ON-BOARD COMPUTER (HAUSAT-2 비행소프트웨어 개발)

  • Shim Chang-Hwan;Ryu Jung-Hwan;Choi Young-Hoon;Chang Young-Keun
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.04a
    • /
    • pp.117-120
    • /
    • 2006
  • HAUSAT-2 flight software was developed by first analyzing the satellite requirements, and incorporating the results into the software. Coding and compiling is done after the software is completed, then individual and integrated tests are performed in order to verify the flight software algorithm. Currently, HAUSAT-2 flight software integrated test has been performed and the test result is serving as a basis for code modification nd additional developments. This paper describes the architecture, development process, and development environment of HAUSAT-2 flight software.

  • PDF