• Title/Summary/Keyword: Integral representations

Search Result 79, Processing Time 0.021 seconds

CERTAIN INTEGRAL REPRESENTATIONS OF GENERALIZED STIELTJES CONSTANTS γk(a)

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.41-53
    • /
    • 2015
  • A large number of series and integral representations for the Stieltjes constants (or generalized Euler-Mascheroni constants) ${\gamma}_k$ and the generalized Stieltjes constants ${\gamma}_k(a)$ have been investigated. Here we aim at presenting certain integral representations for the generalized Stieltjes constants ${\gamma}_k(a)$ by choosing to use four known integral representations for the generalized zeta function ${\zeta}(s,a)$. As a by-product, our main results are easily seen to specialize to yield those corresponding integral representations for the Stieltjes constants ${\gamma}_k$. Some relevant connections of certain special cases of our results presented here with those in earlier works are also pointed out.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HC

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.4
    • /
    • pp.473-482
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeo-metric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_C$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HA

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.113-124
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_A$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

INTEGRAL REPRESENTATIONS FOR SRIVASTAVA'S HYPERGEOMETRIC FUNCTION HB

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • While investigating the Lauricella's list of 14 complete second-order hypergeometric series in three variables, Srivastava noticed the existence of three additional complete triple hypergeometric series of the second order, which were denoted by $H_A$, $H_B$ and $H_C$. Each of these three triple hypergeometric functions $H_A$, $H_B$ and $H_C$ has been investigated extensively in many different ways including, for example, in the problem of finding their integral representations of one kind or the other. Here, in this paper, we aim at presenting further integral representations for the Srivatava's triple hypergeometric function $H_B$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.