• Title/Summary/Keyword: Integral equations (numerical methods)

Search Result 41, Processing Time 0.03 seconds

LEGENDRE EXPANSION METHODS FOR THE NUMERICAL SOLUTION OF NONLINEAR 2D FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND

  • Nemati, S.;Ordokhani, Y.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.609-621
    • /
    • 2013
  • At present, research on providing new methods to solve nonlinear integral equations for minimizing the error in the numerical calculations is in progress. In this paper, necessary conditions for existence and uniqueness of solution for nonlinear 2D Fredholm integral equations are given. Then, two different numerical solutions are presented for this kind of equations using 2D shifted Legendre polynomials. Moreover, some results concerning the error analysis of the best approximation are obtained. Finally, illustrative examples are included to demonstrate the validity and applicability of the new techniques.

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

USING CROOKED LINES FOR THE HIGHER ACCURACY IN SYSTEM OF INTEGRAL EQUATIONS

  • Hashemiparast, S.M.;Sabzevari, M.;Fallahgoul, H.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.145-159
    • /
    • 2011
  • The numerical solution to the linear and nonlinear and linear system of Fredholm and Volterra integral equations of the second kind are investigated. We have used crooked lines which includ the nodes specified by modified rationalized Haar functions. This method differs from using nominal Haar or Walsh wavelets. The accuracy of the solution is improved and the simplicity of the method of using nominal Haar functions is preserved. In this paper, the crooked lines with unknown coefficients under the specified conditions change the system of integral equations to a system of equations. By solving this system the unknowns are obtained and the crooked lines are determined. Finally, error analysis of the procedure are considered and this procedure is applied to the numerical examples, which illustrate the accuracy and simplicity of this method in comparison with the methods proposed by these authors.

JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL

  • Yang, Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.247-262
    • /
    • 2016
  • We propose and analyze spectral and pseudo-spectral Jacobi-Galerkin approaches for weakly singular Volterra integral equations (VIEs). We provide a rigorous error analysis for spectral and pseudo-spectral Jacobi-Galerkin methods, which show that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

REMOVAL OF HYPERSINGULARITY IN A DIRECT BEM FORMULATION

  • Lee, BongJu
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.425-440
    • /
    • 2010
  • Using Green's theorem, elliptic boundary value problems can be converted to boundary integral equations. A numerical methods for boundary integral equations are boundary elementary method(BEM). BEM has advantages over finite element method(FEM) whenever the fundamental solutions are known. Helmholtz type equations arise naturally in many physical applications. In a boundary integral formulation for the exterior Neumann there occurs a hypersingular operator which exhibits a strong singularity like $\frac{1}{|x-y|^3}$ and hence is not an integrable function. In this paper we are going to remove this hypersingularity by reducing the regularity of test functions.

MULTIGRID METHOD FOR NONLINEAR INTEGRAL EQUATIONS

  • HOSAE LEE
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.487-500
    • /
    • 1997
  • In this paper we introduce a multigrid method for solving the nonliear Urysohn integral equation. The algorithm is derived from a discrete resolvent equation which approximates the continuous resolvent equation of the nonlinear Urysohn integral equa-tion. The algorithm is mathematically equivalent to Atkinson's adap-tive twogrid iteration. But the two are different computationally. We show the convergence of the algorithm and its equivalence to Atkinson's adaptive twogrid iteration. in our numerical example we compare our algorithm to other multigrid methods for solving the nonliear Urysohn integral equation including the nonlinear multigrid nethod introduced by hackbush.

DECOMPOSITION METHOD FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • KAMEL AL-KHALED;ALLAN FATHI
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.415-425
    • /
    • 2005
  • This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method.

A Numerical Method for the Minimum Norm Solution to the First Kind Integral Equations

  • Yun, Jae Heon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.6 no.1
    • /
    • pp.25-43
    • /
    • 1993
  • This paper introduces a numerical method approximating the minimum norm solution to the first kind integral equation Kf = g with its kernel satisfying a certain property, where g belongs to the range space of K. Most of the existing expansion methods suffer from choosing a set of basis functions, whereas this method automatically provides an optimal set of basis functions approximating the minimum norm solution of Kf = g. Perturbation results and numerical experiments are also provided to analyze this method.

  • PDF

Wind velocity simulation of spatial three-dimensional fields based on autoregressive model

  • Gao, Wei-Cheng;Yu, Yan-Lei
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.241-256
    • /
    • 2008
  • This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of freedom of structures; the improved Gauss formula to calculate the numerical integral equations which integral functions contain oscillating functions; the mixed congruence and central limit theorem of Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank of the AR model. The numerical examples show that all those methods are stable and reliable, which can be used to simulate the wind velocity of all large span structures in civil engineering.

A Vorticity-Based Method for Incompressible Viscous Flow Analysis (와도를 기저로 한 비압축성 점성유동해석 방법)

  • Suh J. C.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF