
J. Appl. Math. & Informatics Vol. 31(2013), No. 5 - 6, pp. 609 - 621
http://dx.doi.org/10.14317/jami.2013.609

LEGENDRE EXPANSION METHODS FOR THE NUMERICAL

SOLUTION OF NONLINEAR 2D FREDHOLM INTEGRAL

EQUATIONS OF THE SECOND KIND

S. NEMATI∗ AND Y. ORDOKHANI

Abstract. At present, research on providing new methods to solve non-
linear integral equations for minimizing the error in the numerical calcula-
tions is in progress. In this paper, necessary conditions for existence and
uniqueness of solution for nonlinear 2D Fredholm integral equations are

given. Then, two different numerical solutions are presented for this kind
of equations using 2D shifted Legendre polynomials. Moreover, some re-
sults concerning the error analysis of the best approximation are obtained.
Finally, illustrative examples are included to demonstrate the validity and

applicability of the new techniques.
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1. Introduction

There are many works on developing and analyzing numerical methods for
solving the 1D Fredholm integral equations of the second kind [2, 5, 9, 12, 10].
But little work has been done to solve the 2D cases. Papers [14] and [15] are
concerned with the numerical solution for linear 2D Fredholm integral equations
(2D-FIEs). In [7], an approximate solution of the nonlinear 2D-FIEs was pre-
sented by the Nystrom scheme. In [8], the asymptotic expansion for the approx-
imate solution of this kind of equations was considered by the iterated discrete
Galerkin method. Alipanah and Smaeili [1] considered the numerical solution of
the nonlinear 2D-FIE using Gaussian radial basis function. The authors of [4],
presented a numerical solution of the nonlinear 2D-FIEs using rationalized Haar
functions.
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In this paper, we consider the following nonlinear 2D-FIE of the second kind

u(x, y) = f(x, y) +

∫ d

c

∫ b

a

K(x, y, t, s)g(t, s, u(t, s))dtds (1)

where u(x, y) is the unknown function in Ω = [a, b]× [c, d], functions f and K are
given smooth functions and the function g is given continuous function nonlinear
in u.
The outline of this paper is as follows: In Section 2, existence and uniqueness
of solution are discussed. In Section 3, some properties of 2D shifted Legendre
functions are included. In section 4, we give two approximate solutions for
equation (1) using 2D shifted Legendre functions. In section 5, we estimate the
error of the best approximation for two-variate sufficiently smooth functions.
Numerical examples are given in Section 6 to illustrate the accuracy of our
methods. Finally, concluding remarks are presented in Section 7.

2. Existence and uniqueness of solution

Consider equation (1) with the following assumptions:
(1) f is continuous in Ω,
(2) K is continuous in Q = Ω× Ω,
(3) g is continuous in the domain

W = {(t, s); a ≤ t ≤ b, c ≤ s ≤ d, |u| ≤ ∞}
and satisfies the Lipschitz condition with respect to its third argument:

|g(t, s, ū)− g(t, s, ¯̄u)| ≤M |ū− ¯̄u|.

Lemma 2.1. Existence and uniqueness of solution to equation (1) follow by
assumptions (1)–(3) and the condition

M1M(b− a)(d− c) < 1,

where

M1 = max
(x,y,t,s)∈Q

|K(x, y, t, s)|.

Proof. It can be proved using Banach’s fixed point theorem in a similar method
as done in [3], Chapter 5 (for 1D linear Fredholm integral equations). �

3. Properties of 2D shifted Legendre polynomials

3.1. Definition and function approximation. 2D shifted Legendre poly-
nomials are defined on Ω as

ψmn(x, y) = Lm(
2

b− a
x− b+ a

b− a
)Ln(

2

d− c
y − d+ c

d− c
), m, n = 0, 1, 2, . . . , (2)

and are orthogonal with respect to the weight function ω(x, y) = 1 such that∫ d

c

∫ b

a

ω(x, y)ψmn(x, y)ψij(x, y)dxdy =

{
b−a

2m+1
× d−c

2n+1
, i = m, j = n,

0, otherwise.
(3)
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In (2), Lm and Ln are the well-known Legendre polynomials, respectively of
order m and n which are defined on the interval [−1, 1] and can be determined
with the aid of the following recursive formula [3]:

L0(x) = 1,
L1(x) = x,
Lm+1(x) =

2m+1
m+1 xLm(x)− m

m+1Lm−1(x), m = 1, 2, 3, . . . .

We note that {ψmn(x, y)}∞m,n=0, are total orthogonal basis for the space L2(Ω)
[11]. The inner product in this space is defined by

⟨f(x, y), g(x, y)⟩ =
∫ d

c

∫ b

a

f(x, y)g(x, y)dxdy, (4)

and the norm is as follows:

∥f(x, y)∥2 = ⟨f(x, y), f(x, y)⟩ 1
2 = (

∫ d

c

∫ b

a

|f(x, y)|2dxdy)
1
2

.

A function u(x, y) defined on Ω may be expanded as

u(x, y) =

∞∑
m=0

∞∑
n=0

cmnψmn(x, y), (5)

where

cmn =
⟨u(x, y), ψmn(x, y)⟩

∥ψmn(x, y)∥22
.

Let ΠM,N (Ω) be the space of all polynomials of degree less than or equal to
M in variable x and degree less than or equal to N in variable y. Then the
functions {ψmn(x, y)}, m = 0, 1, . . . ,M , n = 0, 1, . . . , N, form an orthogonal
basis for ΠM,N (Ω).
If the infinite series in (5) is truncated, then it can be written as

uM,N (x, y) =

M∑
m=0

N∑
n=0

cmnψmn(x, y) = CTψ(x, y), (6)

where C and ψ(x, y) are (M + 1)(N + 1)× 1 vectors given by

C = [c00, c01, . . . , c0N , c10, . . . , c1N , . . . , cM0, . . . , cMN ]T ,

ψ(x, y) = [ψ00(x, y), ψ01(x, y), . . . , ψ0N (x, y), ψ10(x, y), . . . , ψ1N (x, y), . . .
, ψM0(x, y), . . . , ψMN (x, y)]T .

The function uM,N (x, y) is the orthogonal projection of u(x, y) onto the poly-
nomials’ space ΠM,N (Ω) with respect to the inner product (4) and is the best
approximation to u(x, y) (see [11]).
Similarly, any function K(x, y, t, s) in (Ω×Ω) may be expanded in terms of 2D
shifted Legendre polynomials as

K(x, y, t, s) ≃ ψT (x, y)Kψ(t, s),
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where K is a block matrix of the form

K = [K(i,m)]Mi,m=0,

in which

K(i,m) = [kijmn]
N
j,l=0, i,m = 0, 1, . . . ,M,

and 2D shifted Legendre coefficients kijmn, are given by

kijmn =
⟨⟨K(x, y, t, s), ψmn(t, s)⟩, ψij(x, y)⟩

∥ψij(x, y)∥22∥ψmn(t, s)∥22
, i,m = 0, 1, . . . ,M, j, n = 0, 1, . . . , N.

3.2. Operational matrix of dual. The integration of the product of two
vectors ψ(x, t) and ψT (x, t) using equation (3) is given by∫ d

c

∫ b

a

ψ(x, t)ψT (x, t)dxdt = Q = D1 ⊗D2, (7)

where D1 and D2 are the operational matrices of 1D shifted Legendre polyno-
mials, respectively defined on [a, b] and [c, d] of the form

D1 = (b− a)


1 0 0 · · · 0
0 1

3 0 · · · 0
0 0 1

5 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
2M+1

 ,

D2 = (d− c)


1 0 0 · · · 0
0 1

3 0 · · · 0
0 0 1

5 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
2N+1

 .
In (7), ⊗ denotes the Kronecker product defined for two arbitrary matrices A
and B as (see [13])

A⊗B = (aijB) .

4. Numerical methods

In this section, we give two different numerical solutions of equation (1) using
2D shifted Legendre functions and their properties discussed in previous section.

Method I: Consider nonlinear 2D-FIE of the form (1). Suppose that

G(x, y) = g(x, y, u(x, y)). (8)

Then equation (1) can be rewritten as

u(x, y) = f(x, y) +

∫ d

c

∫ b

a

K(x, y, t, s)G(t, s)dtds. (9)
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We approximate functions in equation (9) by the method mentioned in previous
section as

u(x, y) ≃ CTψ(x, y) = ψT (x, y)C, (10)

f(x, y) ≃ FTψ(x, y) = ψT (x, y)F, (11)

G(x, y) ≃ GTψ(x, y) = ψT (x, y)G, (12)

K(x, y, t, s) ≃ ψT (x, y)Kψ(t, s), (13)

where C and G are unknown vectors of order (M + 1)(N + 1).
Substituting approximations (10)–(13) into equation (9), we obtain

ψT (x, y)C = ψT (x, y)F + ψT (x, y)K(

∫ d

c

∫ b

a

ψ(t, s)ψT (t, s)dtds)G. (14)

Using equation (7) in (14), we get

C − F −KQG = 0. (15)

Moreover, substituting approximations (10) and (12) into equation (8) yields:

g(x, y, CTψ(x, y)) = GTψ(x, y). (16)

Finally, collocating equation (16) in(M +1)(N +1) points (xi, yj) (i = 0, 1, . . . ,M,

j = 0, 1, . . . , N), we get

g(xi, yj , C
Tψ(xi, yj))−GTψ(xi, yj) = 0, (17)

where xi and yj are zeros of LM+1(
2

b−ax−
b+a
b−a ) and LN+1(

2
d−cy−

d+c
d−c ) respec-

tively.
Equations (15) and (17) form 2(M +1)(N +1) algebraic equations which can be
solved in terms of the elements of vectors C and G using the well-known New-
ton’s iterative method. Then we have ū(x, y) = CTψ(x, t) as an approximate
solution of equation (1).

Method II: In this method, we expand the function K(x, y, t, s) in equation
(1) as

K(x, y, t, s) ≃ KT (x, y)ψ(t, s), (18)

where

K(x, y) = [k00(x, y), k01(x, y), . . . , k0N (x, y), k10(x, y), . . . , k1N (x, y), . . .
, kM0(x, y), . . . , kMN (x, y)]T ,

and

kij(x, y) =
⟨K(x, y, t, s), ψij(t, s)⟩

∥ψij(t, s)∥2
=

(2i+ 1)(2j + 1)

(b− a)(d− c)

∫ d

c

∫ b

a

K(x, y, t, s)ψij(t, s)dtds.

Considering (8) and approximations (12) and (18), equation (1) can be written
as

u(x, y) ≃ f(x, y) +KT (x, y)

∫ d

c

∫ b

a

ψ(t, s)ψT (t, s)dtdsG. (19)



614 S. Nemati and Y. Ordokhani

Substituting equation (7) for (19), we obtain

u(x, y) ≃ f(x, y) +KT (x, y)QG. (20)

Using equations (8), (12) and (20), we get

g(x, y, f(x, y) +KT (x, y)QG) = GTψ(x, y), (21)

Collocating equation (21) at (M + 1)(N + 1) points (xi, yj) (i = 0, 1, . . . ,M,
j = 0, 1, . . . , N) (the points are same as method I), as

g(xi, yj , f(xi, yj) +KT (xi, yj)QG) = GTψ(xi, yj). (22)

Equations (22) form a system of (M + 1)(N + 1) nonlinear algebraic equations
which can be solved using the well-known Newton’s iterative method in terms of
the elements of vector G. Substituting G in equation (20), we find û(x, y) as an
approximate solution of equation (1). Note that this approximated solution does
not belong to polynomials’ space ΠM,N (Ω), which was introduced in Section 3.

5. Estimation of the error

In this section we are concerned with the error of the approximation of a given
two-variate function by its expansion in terms of 2D shifted Legendre functions.
We assume that f(x, y) is a sufficiently smooth function on Ω and fM,N (x, y)
in ΠM,N (Ω) is its best approximation. We want to find a bound for ∥f(x, y) −
fM,N (x, y)∥2. For this purpose, consider that PM,N (x, y) is any polynomial of
degree≤M in variable x and degree≤ N in variable y. By definition of the best
approximation we have

∥f(x, y)− fM,N (x, y)∥2 ≤ ∥f(x, y)− PM,N (x, y)∥2. (23)

Inequality (23) is also true for the special case that PM,N (x, y) is the interpolat-
ing polynomial to f at points (xi, yj), where

xi = a+ i
b− a

M
, yj = c+ j

d− c

N
, i = 0, 1, . . . ,M, j = 0, 1, . . . , N.

We have [6]

f(x, y)− PM,N (x, y) = ∂M+1f(ξ,y)

∂xM+1(M+1)!

∏M
i=0 (x− xi)

+ ∂N+1f(x,η)

∂yN+1(N+1)!

∏N
j=0 (y − yj)

− ∂M+N+2f(ξ′,η′)
∂xM+1∂yN+1(M+1)!(N+1)!

∏M
i=0 (x− xi)

∏N
j=0 (y − yj),
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such that ξ, ξ′ ∈ [a, b] and η, η′ ∈ [c, d]. Therefore

|f(x, y)− PM,N (x, y)| ≤ max(x,y)∈Ω | ∂
M+1f(x,y)

∂xM+1 |
∏M

i=0 |x−xi|
(M+1)!

+max(x,y)∈Ω | ∂
N+1f(x,y)

∂yN+1 |
∏N

j=0 |y−yj |
(N+1)!

+max(x,y)∈Ω | ∂
M+N+2f(x,y)

∂xM+1∂yN+1 |
∏M

i=0 |x−xi|
∏N

j=0 |y−yj |
(M+1)!(N+1)!

.

(24)

We would like to derive bounds for the following terms

M∏
i=0

|x− xi|,
N∏
j=0

|y − yj |.

We make the change of variables

x = a+ θ
b− a

M
, y = c+ λ

d− c

N
, θ ∈ (0,M), λ ∈ (0, N),

thus we obtain,
M∏
i=0

|x− xi| = (
b− a

M
)
M+1 M∏

i=0

|θ − i|, (25)

N∏
j=0

|y − yj | = (
d− c

N
)
N+1 N∏

j=0

|λ− j|. (26)

Suppose that k and l are integers such that

k < θ < k + 1, l < λ < l + 1, (27)

therefore, we can write

M∏
i=0

|θ − i| = |(θ − k)(θ − k − 1)|
k−1∏
i=0

|θ − i|
M∏

i=k+2

|θ − i|, (28)

N∏
j=0

|λ− j| = |(λ− l)(λ− l − 1)|
l−1∏
j=0

|λ− j|
N∏

j=l+2

|λ− j|. (29)

The terms |(θ− k)(θ− k− 1)| and |(λ− l)(λ− l− 1)| give their maximum value
respectively at the points θ + 1

2 and λ+ 1
2 . So we can say

|(θ − k)(θ − k − 1)| ≤ 1

4
, (30)

|(λ− l)(λ− l − 1)| ≤ 1

4
. (31)

Also, using (27), we get

k−1∏
i=0

|θ − i| ≤
k−1∏
i=0

(k + 1− i) ≤ (k + 1)!, (32)
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M∏
i=k+2

|θ − i| ≤
M∏

i=k+2

(i− k) ≤ (M − k)!, (33)

l−1∏
j=0

|λ− j| ≤
l−1∏
j=0

(l + 1− j) ≤ (l + 1)!, (34)

N∏
j=l+2

|λ− j| ≤
N∏

j=l+2

(j − l) ≤ (N − l)!. (35)

Substituting the estimates in (30)–(35) for (28) and (29) yields:

M∏
i=0

|θ − i| ≤ 1

4
(M + 1)!, (36)

N∏
j=0

|λ− j| ≤ 1

4
(N + 1)!. (37)

Using equations (25), (26), (36) and (37), we obtain

M∏
i=0

|x− xi| ≤ (
b− a

M
)
M+1 1

4
(M + 1)!, (38)

N∏
j=0

|y − yj | ≤ (
d− c

N
)
N+1 1

4
(N + 1)!. (39)

Substituting bounds in (38) and (39) for (24), we see that the error in two-variate
polynomial interpolation satisfies in

|f(x, y)− PM,N (x, y)| ≤ 1
4
( b−a

M
)
M+1

max(x,y)∈Ω | ∂
M+1f(x,y)

∂xM+1 |

+ 1
4
( d−c

N
)
N+1

max(x,y)∈Ω | ∂
N+1f(x,y)

∂yN+1 |

+ 1
16
( b−a

M
)
M+1

( d−c
N

)
N+1

max(x,y)∈Ω | ∂
M+N+2f(x,y)

∂xM+1∂yN+1 |

= C1(
b−a
M

)
M+1

+ C2(
d−c
N

)
N+1

+ C3(
b−a
M

)
M+1

( d−c
N

)
N+1

,

(40)

where

C1 =
1

4
max

(x,y)∈Ω
|∂

M+1f(x, y)

∂xM+1
|,

C2 =
1

4
max

(x,y)∈Ω
|∂

N+1f(x, y)

∂yN+1
|,

C3 =
1

16
max

(x,y)∈Ω
|∂

M+N+2f(x, y)

∂xM+1∂yN+1
|.

Finally, using (23) we get
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∥f(x, y) − fM,N (x, y)∥2 ≤ (

∫ d

c

∫ b

a

|f(x, y) − PM,N (x, y)|2dxdy)
1
2

≤ (

∫ d

c

∫ b

a

[C1(
b − a

M
)
M+1

+ C2(
d − c

N
)
N+1

+ C3(
b − a

M
)
M+1

(
d − c

N
)
N+1

]
2

dxdy)

1
2

=
√

(b − a)(d − c)[C1(
b − a

M
)
M+1

+ C2(
d − c

N
)
N+1

+ C3(
b − a

M
)
M+1

(
d − c

N
)
N+1

]. (41)

Remark. In the case that M = N and Ω = [0, 1] × [0, 1], we conclude from
(41) that

∥f(x, y)− fM,N (x, y)∥2 ≤ (C1 + C2 + C3(
1

M
)
M+1

)(
1

M
)
M+1

.

6. Illustrative examples

In this section, two examples are given to demonstrate the applicability and
accuracy of our methods. In the examples we consider Ω = [0, 1] × [0, 1] and
M = N . In order to demonstrate the error of the proposed methods, let us
introduce the following notations:

eM (x, y) = |u(x, y)− uM,M (x, y)|

ēM (x, y) = |u(x, y)− ūM,M (x, y)|,

êM (x, y) = |u(x, y)− ûM,M (x, y)|,
where u(x, y), uM,M (x, y), ūM,M (x, y) and ûM,M (x, y) are the exact solution, its
best approximation using 2D shifted Legendre functions, the computed solution
by Method I and the computed solution by Method II, respectively.
The computations were performed in a personal computer using a processor with
2.20 GHz and the codes were written in Mathematica 8.

Example 6.1. Consider the following nonlinear 2D-FIE [7, 1, 4]

u(x, y) = f(x, y) +

∫ 1

0

∫ 1

0

x

1 + y
(1 + t+ s)u2(t, s)dtds,

where
1

(1 + x+ y)2
− x

6(1 + y)
.

Its exact solution is u(x, y) = 1/(1 + x+ y)2. Numerical results are shown in
Table 1, Figure 1 and Figure 2.

Example 6.2. Consider nonlinear 2D-FIE as [8]

u(x, y) = f(x, y) +

∫ 1

0

∫ 1

0

x(1− t2)

(1 + y)(1 + s2)
(1− exp(−u(t, s)))dtds,
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Table 1. Numerical results for Example 6.1.

M ∥eM (x, y)∥2 ∥ēM (x, y)∥2 ∥êM (x, y)∥2 ∥eM (x, y)∥∞ ∥ēM (x, y)∥∞ ∥êM (x, y)∥∞
1 3.29 × 10−2 3.29 × 10−2 1.68 × 10−3 8.62 × 10−2 8.62 × 10−2 4.13 × 10−3

2 6.83 × 10−3 6.83 × 10−3 7.62 × 10−5 2.05 × 10−2 2.05 × 10−2 1.86 × 10−4

3 1.34 × 10−3 1.34 × 10−3 2.98 × 10−6 6.46 × 10−3 6.46 × 10−3 7.30 × 10−6

4 2.55 × 10−4 2.55 × 10−4 1.08 × 10−7 1.39 × 10−3 1.39 × 10−3 2.66 × 10−7

5 4.77 × 10−5 4.77 × 10−5 3.82 × 10−9 3.26 × 10−4 3.26 × 10−4 9.36 × 10−9

6 8.78 × 10−6 8.78 × 10−6 1.30 × 10−10 6.74 × 10−5 6.74 × 10−5 3.20 × 10−10

7 1.53 × 10−6 1.53 × 10−6 4.37 × 10−12 1.41 × 10−5 1.41 × 10−5 1.07 × 10−11

Figure 1. Plot of the absolute error for Example 6.1 using
Method I; left: M = 3, right: M = 6.

Figure 2. Plot of the absolute error for Example 6.1 using
Method II; left: M = 3, right: M = 6.

where
f(x, y) = −Ln(1 + xy

1 + y2
) +

x

16(1 + y)
.

Its exact solution is u(x, y) = −Ln(1 + xy
1+y2 ). Table 2, Figure 3 and Figure 4

give the numerical results for this example.
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Table 2. Numerical results for Example 6.2.

M ∥eM (x, y)∥2 ∥ēM (x, y)∥2 ∥êM (x, y)∥2 ∥eM (x, y)∥∞ ∥ēM (x, y)∥∞ ∥êM (x, y)∥∞
1 2.44 × 10−2 2.44 × 10−2 2.81 × 10−4 9.90 × 10−2 9.90 × 10−2 6.88 × 10−4

2 2.40 × 10−3 2.40 × 10−3 4.23 × 10−6 1.41 × 10−2 1.41 × 10−2 1.03 × 10−5

3 5.68 × 10−4 5.68 × 10−4 1.63 × 10−6 2.83 × 10−3 2.83 × 10−3 3.99 × 10−6

4 2.01 × 10−4 2.01 × 10−4 9.11 × 10−8 1.11 × 10−3 1.11 × 10−3 2.23 × 10−7

5 2.12 × 10−5 2.12 × 10−5 2.14 × 10−9 1.49 × 10−4 1.49 × 10−4 5.26 × 10−9

6 4.66 × 10−6 4.66 × 10−6 1.45 × 10−10 1.93 × 10−5 1.93 × 10−5 3.55 × 10−10

7 1.60 × 10−6 1.60 × 10−6 1.47 × 10−11 9.05 × 10−6 9.05 × 10−6 3.60 × 10−11

Figure 3. Plot of the absolute error for Example 6.2 using
Method I; left: M = 3, right: M = 6.

Figure 4. Plot of the absolute error for Example 6.2 using
Method II; left: M = 3, right: M = 6.

7. Conclusion

In this paper, we presented two different methods to solve nonlinear 2D-FIEs.
The properties of 2D shifted Legendre orthogonal functions together with the
collocation method were used to transform the given problem to the solution of
nonlinear algebraic equations. Note that the final nonlinear equations can be
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solved using the Newton’s iterative method. We gave an error bound when a
sufficiently smooth function is approximated in terms of 2D shifted Legendre
functions (error of the best approximation of the function). We applied the pre-
sented methods on two test problems and compared the results with their exact
solutions in order to demonstrate the validity and applicability of the methods.
Table 1 and Table 2 show that the numerical solution obtained by Method I
has the same error behavior as the error of the best approximation of the exact
solution using Legendre functions. Moreover, the required computational effort
for Method II is smaller than Method I (the computations can be carried out
by a personal computer). It can be found from the tables that Method II has
more accurate results than Method I. We leave as future work the error analysis
of the proposed methods.
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