• 제목/요약/키워드: Integral Transform

검색결과 344건 처리시간 0.028초

An Improved Stationary Frame-based Digital Current Control Scheme for a PM Synchronous Motor

  • Kim, Kyeong-Hwa;Young, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.88-98
    • /
    • 2001
  • An improved stationary frame-based digital current control technique for a permanent magnet(PM) synchronous motor is presented. Generally, the stationary frame current controller is known to provide the advantage of a simple implementation. However, there are some unavoidable limitations such as a steady-state error and a phase delay in the steady-state. On the other hand, in the synchronous frame current regulator the regulated currents are dc quantities and a zero steady-state error can be obtained through the integral control. However, the need to transform the signals between the stationary and synchronous frames makes the implementation of a synchronous frame regulator complex. Although the PI controller in the stationary frame gives a steady-state error and a phase delay, the control performance can be greatly improved by employing the exact decoupling control inputs for the back EMF., resulting in an ideal steady-state control characteristics irrespective of an operating condition as in the synchronous PI decoupling controller. However, its steady-state response may be degraded due to the inexact cancellation inputs under the parameter variations. To improve the control performance in the stationary frame, the disturbance is estimated using the time delay control. The proposed scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative simulations and experiments.

  • PDF

면외변형하의 이방성 띠판에 대한 동적계면균열 (Dynamic Interfacial Crack in Bonded Anisotropic Strip Under Out-of-Plane Deformation)

  • 박재완;최성렬
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.949-958
    • /
    • 2001
  • A semi-infinite interfacial crack propagated with constant velocity in two bonded anisotropic strips under out-of-plane clamped displacements is analyzed. Using Fourier integral transform the problem is formulated and the Wiener-Hopf equation is derived. By solving this equation the asymptotic stress and displacement fields near the crack tip are obtained, where the results get more general expressions applicable not only to isotropic/orthotropic materials but also to the extent of the anisotropic material having one plane of elastic symmetry for the interfacial crack. The dynamic stress intensity factor is obtained as a closed form, which is decreased as the velocity of crack propagation increases. The critical velocity where the stress intensity factor comes to zero is obtained, which agrees with the lower value between the critical values of parallel crack merged in the material 1 and 2 adjacent to the interface. Using the near tip fields of stresses and displacements, the dynamic energy release rate is also obtained as a form of the stress intensiy factor.

Jet-grouting in ground improvement and rotary grouting pile installation: Theoretical analysis

  • Wang, You;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.279-288
    • /
    • 2020
  • The permeation grouting is a commonly used technique to improve the engineering geology condition of the soft ground. It is of great significance to predict the permeation range of the grout so as to ensure the effects of grouting. This paper conducts a theoretical analysis of jet-grouting effects in ground improvement and rotary grouting pile installation by utilizing deformation-permeation coupled poroelastic solutions based on Biot's theory and Laplace-Fourier integral transform technique. The exponential function and the intermittent trigonometric function are chosen to represent time-dependent grouting pressure usually encountered in ground improvement and rotary grouting pile installation process, respectively. The results, including the radial displacement, the hoop stress, the excess pore fluid pressure, the radial discharge, and the permeation radius of grout, are presented for different grouting time, radial positions and grouting lengths. Parametric study is conducted to explore the effects of variation of the exponent in the exponential grouting pressure-time relationship on grouting-induced responses. It is expected that the proposed solutions can be used to estimate the permeation range of grouting in ground improvement and rotary grouting pile installation.

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.

Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods

  • Yaylaci, Murat;Sabano, Bahar Sengul;Ozdemir, Mehmet Emin;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.401-416
    • /
    • 2022
  • The aim of this study is to examine the frictionless double receding contact problem for two functionally graded (FG) layers pressed with a uniformly distributed load and resting on a homogeneous half plane (HP) using analytical and numerical methods. The FG layers are made of a non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layers and FG layer-HP interface is frictionless. The body force of the FG layers and homogeneous HP are ignored in the study. Firstly, an analytical solution for the contact problem has been realized using the theory of elasticity and the Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using the ANSYS package program based on FEM. Numerical results for contact lengths and contact pressures between FG layers and FG layer-HP were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio, and the heights of the FG layers for both methods. The results obtained using FEM were compared with the results found using the analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • 제86권4호
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

Multirate 샘플링을 이용한 CDBC의 설계 (Design of a CDBC Using Multirate Sampling)

  • 김진용;김성열;이금원
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.47-51
    • /
    • 2003
  • 디지털제어에 잘 사용되어 온 유한정정제어를 연속계에 적용하기는 연속계의 점근성 때문에 어려운 것으로 알려져 있다. 그러나 유한 Laplace변환을 전달함수에 적용하고 여기에 정정조건을 적용하여 제어기를 설계한 연속계 유한정정제어기(CDBC, Continuous-time Deadbeat Controller)에 대해서 연구가 되고 있다. 이에 따라 지연요소가 전달함수에 사용되어 정정을 위한 차수 및 보간조건이 유도되어 제어기가 설계되거나, 디지털 유한정정제어기를 설계하고 이를 연속계 제어기로 변환하기 위해 평활요소로 사용하여 CDBC를 구성하기도 한다. 본 논문에서는 다중 샘플링을 적용하여 제어기와 출력귀환루프의 샘플링 속도를 달리하였으며, 2차 평활요소를 디지털 유한정정제어기에 사용한 CDBC를 연구한다. 이러한 다중 샘플링은 샘플링 주기 동안에 제어루프를 또 샘플링하여 전체적인 출력응답을 개선할 수 있다. 제어기는 직렬 적분 보상기를 전향경로에 배치하고 지역 귀환보상기를 귀환 루프에 도입한다. Matlab Simulink을 사용하여 시뮬레이션을 한다.

  • PDF

이동, 배율, 회전에 무관한 자동 검사 장치 개발에 관한 연구 (A study on Translation-, Magnification- and Rotation- Invariant automatic Inspection System Development)

  • 오춘석;임종설
    • 한국정보처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.1136-1142
    • /
    • 1999
  • 통상 자동 검사 장치에 있어 대상체가 기준점에서 이동되거나, 크기가 일정한 배율로 확대 축소되거나, 회전되어있을 때에 대상체를 인식 판별하데 어려움이 존재한다. 본 논문에서는 이동, 배율, 회전에 무관한 검사 장치 구현을 위해 로그 적분 변환을 정의하고 그의 특성을 고찰하여 기존의 검사 방법과 비교한다. 로그 적분 변환의 주요한 특성인 배율과 회전에 무관하게 대상체를 인식할 수 있는 특성을 이용하므로 기존 시스템에서 회전 정보 추출을 위한 노력을 감쇄시킬 수 있다. 이동, 배율 및 회전된 물체의 불량 검사에 새로운 방법으로 로그 적분 변환의 적용을 제안하고 이에 따른 인식률 실험을 수행한다. 물론 기존 시스템에서는 배율과 회전에 무관한 조건을 동시에 만족시킬 수 없었다. 불량 검사 실험 결과에 있어 기존의 신경망을 이용한 기존 시스템에 비해 최적의 수준에는 도달하지는 못했지만 로그 적분 변환이 배율과 회전을 동시에 충족시킬 수 있는 변환으로서 사용 가능성을 얻을 수 있었다.

  • PDF

파이프라인드식 비교기 배열을 이용한 아날로그 디지털 변환기 (Analog-to-Digital Converter using Pipelined Comparator Array)

  • 손주호;조성익;김동용
    • 전자공학회논문지SC
    • /
    • 제37권2호
    • /
    • pp.37-42
    • /
    • 2000
  • 본 논문에서는 파이프라인드 구조의 빠른 변환 속도와 축차비교 구조의 저전력 구조를 이용하여 고속, 저전력 아날로그 디지털 변환기를 제안하였다. 제안된 구조의 변환 방법은 축차비교 구조의 변환에서 비교기를 파이프라인드 구조로 연결하여 홀드된 주기에 비교기의 기준 전위를 전 비교기의 출력 값에 의해 변환하도록 하여 고속 동작이 가능하도록 하였다. 제안된 구조에 의해 8비트 아날로그 디지털 변환기를 0.8㎛ CMOS공정으로 HSPICE를 이용하여 시뮬레이션한 결과, INL/DNL(Integral Non-Linearity/Differential Non-Linearity)은 각각 ±0.5/±1이었으며, 100㎑ 사인 입력 신호를 10MS/s로 샘플링 하여 DFT(Discrete Fourier Transform)측정 결과 SNR(Signal to Noise Ratio)은 41㏈를 얻을 수 있었다. 10MS/s의 변환 속도에서 전력 소모는 4.14㎽로 측정되었다.

  • PDF