Browse > Article
http://dx.doi.org/10.12989/sem.2019.70.5.623

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators  

Ajri, Masoud (School of Mechanical Engineering, College of Engineering, University of Tehran)
Rastgoo, Abbas (School of Mechanical Engineering, College of Engineering, University of Tehran)
Fakhrabadi, Mir Masoud Seyyed (School of Mechanical Engineering, College of Engineering, University of Tehran)
Publication Information
Structural Engineering and Mechanics / v.70, no.5, 2019 , pp. 623-637 More about this Journal
Abstract
This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.
Keywords
viscoelasticity; non-stationary motion; nonlinear dynamic; super-harmonic resonance; nano-resonator;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Ghayesh, M.H., Farokhi, H., Hussain, S., Gholipour, A. and Arjomandi, M. (2017), "A size-dependent nonlinear third-order shear-deformable dynamic model for a microplate on an elastic medium", Microsyst. Technol., 23(8), 3281-3299. https://doi.org/10.1007/s00542-016-3096-8.   DOI
2 Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch Rat. Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375.   DOI
3 Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Compos. Part B, 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008.   DOI
4 Huang, N.E., Shen, Z. and Long, S.R. (1999), "A new view of nonlinear water waves: the Hilbert spectrum", Annual Rev. Fluid Mech., 31(1), 417-457.   DOI
5 Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. https://doi.org/10.1098/rspa.1998.0193.
6 Huang, X., Feng, X., Zorman, C., Mehregany, M. and Roukes, M. (2005), "VHF, UHF and microwave frequency nanomechanical resonators", New J. Phys., 7(1), 247.   DOI
7 Qian, Y., Fu, H. and Guo, J. (2018), "Weakly resonant double Hopf bifurcation in coupled nonlinear systems with delayed freedback and application of homotopy analysis method", J. Low Frequency Noise, Vib. Active Control, ttps://doi.org/10.1177/1461348418765975.
8 Qian, Y. and Zhang, Y. (2017), "Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application", Struct. Eng. Mech., 61(1), 105-116. https://doi.org/10.12989/sem.2017.61.1.105.   DOI
9 Huber, T.M., Abell, B.C., Mellema, D.C., Spletzer, M. and Raman, A. (2010), "Mode-selective noncontact excitation of microcantilevers and microcantilever arrays in air using the ultrasound radiation force", Appl. Phys. Lett., 97(21), 214101. https://doi.org/10.1063/1.3521256.   DOI
10 Hwang, D.G., Chae, Y.M., Choi, N., Cho, I.J., Kang, J.Y. and Lee, S.H. (2017), "Label-free detection of prostate specific antigen (PSA) using a bridge-shaped PZT resonator", Microsyst. Technol., 23(5), 1207-1214. https://doi.org/10.1007/s00542-015-2804-0.   DOI
11 Reddy, J. and Kim, J. (2012), "A nonlinear modified couple stressbased third-order theory of functionally graded plates", Compos. Struct., 94(3), 1128-1143. https://doi.org/10.1016/j.compstruct.2011.10.006.   DOI
12 Sato, M., Hubbard, B., Sievers, A., Ilic, B., Czaplewski, D. and Craighead, H. (2003), "Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array", Physical Rev. Lett., 90(4), https://doi.org/10.1103/PhysRevLett.90.044102.
13 Saulson, P.R. (1990), "Thermal noise in mechanical experiments", Physical Review D, 42(8), 2437. https://doi.org/10.1103/PhysRevD.42.2437.   DOI
14 Setoodeh, A. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.   DOI
15 Shim, S.-B., Imboden, M. and Mohanty, P. (2007), "Synchronized oscillation in coupled nanomechanical oscillators", Science, 316(5821), 95-99. https://doi.org/10.1126/science.1137307.   DOI
16 Shinozuka, M., Chou, P.H., Kim, S., Kim, H., Karmakar, D. and Lu, F. (2010), "Non-invasive acceleration-based methodology for damage detection and assessment of water distribution system", Smart Struct. Syst., 6(6).
17 Smart, J. and Williams, J. (1972), "A comparison of single-integral non-linear viscoelasticity theories", J. Mech. Phys. Solids, 20(5), 313-324. https://doi.org/10.1016/0022-5096(72)90027-0.   DOI
18 Jiang, J.W., Wang, J.S. and Li, B. (2009), "Young's modulus of graphene: a molecular dynamics study", Phys. Rev. B, 80(11), 113405. https://doi.org/10.1103/PhysRevB.80.113405.   DOI
19 Jamalpoor, A., Bahreman, M. and Hosseini, M. (2017), "Free transverse vibration analysis of orthotropic multi-viscoelastic microplate system embedded in visco-Pasternak medium via modified strain gradient theory", J. Sandwich Struct. Mater., https://doi.org/10.1177/1099636216689384.
20 JE., L. (1989), Boundary Stabilization of Thin Plates, SIAM, Philadelphia, USA.
21 Jomehzadeh, E., Noori, H. and Saidi, A. (2011), "The sizedependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E: Low-dimensional Systems and Nanostructures, 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.   DOI
22 Khaniki, H.B. and Hosseini-Hashemi, S. (2017), "Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle", J. Eng. Sci., 115, 51-72. https://doi.org/10.1016/j.ijengsci.2017.02.005.   DOI
23 Kalyanaraman, R., Rinaldi, G., Packirisamy, M. and Bhat, R. (2013), "Equivalent area nonlinear static and dynamic analysis of electrostatically actuated microstructures", Microsyst. Technol., 19(1), 61-70. https://doi.org/10.1007/s00542-012-1621-y.   DOI
24 Karlicic, D., Kozic, P. and Pavlovic, R. (2014), "Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium", Compos. Struct., 115, 89-99. https://doi.org/10.1016/j.compstruct.2014.04.002.   DOI
25 Ke, L.-L., Wang, Y.-S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory", J. Sound Vib., 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020.   DOI
26 Teh, K.S. and Lin, L. (1999), "Time-dependent buckling phenomena of polysilicon micro beams", Microelectronic. J., 30(11), 1169-1172. https://doi.org/10.1016/S0026-2692(99)00081-6.   DOI
27 Su, Y., Wei, H., Gao, R., Yang, Z., Zhang, J., Zhong, Z. and Zhang, Y. (2012), "Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper", Carbon, 50(8), 2804-2809. https://doi.org/10.1016/j.carbon.2012.02.045.   DOI
28 Tajaddodianfar, F., Yazdi, M.R.H. and Pishkenari, H.N. (2017), "Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method", Microsyst. Technol., 23(6), 1913-1926. https://doi.org/10.1007/s00542-016-2947-7.   DOI
29 Tang, Y.Q. and Chen, L.Q. (2012), "Parametric and internal resonances of in-plane accelerating viscoelastic plates", Acta Mechanica, 223(2), 415-431. https://doi.org/10.1007/s00707-011-0567-y.   DOI
30 Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch Rat. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.   DOI
31 Tuck, K., Jungen, A., Geisberger, A., Ellis, M. and Skidmore, G. (2005), "A study of creep in polysilicon MEMS devices", J. Eng. Mater. Technol., 127(1), 90-96. https://doi.org/10.1016/j.physe.2014.11.007.   DOI
32 Lee, H.J., Zhang, P. and Bravman, J.C. (2005), "Stress relaxation in free-standing aluminum beams", Thin Solid Films, 476(1), 118-124. https://doi.org/10.1016/j.tsf.2004.10.001.   DOI
33 Wang, Y., Li, F.M. and Wang, Y.Z. (2015), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Physica E: Low-dimensional Systems and Nanostructures, 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007.   DOI
34 Yan, X., Brown, W., Li, Y., Papapolymerou, J., Palego, C., Hwang, J. and Vinci, R. (2009), "Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices", J. Microelectromech. Syst., 18(3), 570-576.   DOI
35 Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", J. Solid. Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
36 Aifantis, E.C. (1999), Strain Gradient Interpretation of Size Effects, Springer, Germany.
37 Ajri, M., Fakhrabadi, M.M.S. and A. Rastgoo (2018a), "Analytical solution for nonlinear dynamic behavior of viscoelastic nanoplates modeled by consistent couple stress theory", Latin American J. Solids Struct., 15(9),1-23. http://doi.org/10.1590/1679-78254918.   DOI
38 Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
39 Leaderman, H. (1962), "Large longitudinal retarded elastic deformation of rubberlike network polymers", Transac. Soc. Rheology, 6(1), 361-382. https://doi.org/10.1122/1.548932.   DOI
40 Leng, H. and Lin, Y. (2011), "A MEMS/NEMS sensor for human skin temperature measurement", Smart Struct. Syst., 8(1), 53-67. https://doi.org/10.12989/sss.2011.8.1.053.   DOI
41 Li, M., Tang, H.X. and Roukes, M.L. (2007), "Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications", Nature Nanotechnol., 2(2), 114.   DOI
42 Liu, J., Zhang, Y. and Fan, L. (2017), "Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between", Phys. Lett. A, 381(14), 1228-1235. https://doi.org/10.1016/j.physleta.2017.01.056.   DOI
43 Lopez, G. (2013), "Diamond as a solid state quantum computer with a linear chain of nuclear spins system", arXiv preprint arXiv:1310.0750. https://doi.org/10.4236/jmp.2014.51009.
44 Lou, J. and He, L. (2015), "Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory", Compos. Struct., 131, 810-820. https://doi.org/10.1016/j.compstruct.2015.06.031.   DOI
45 Ma, H., Gao, X.L. and Reddy, J. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mechanica, 220(1-4), 217-235.   DOI
46 Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013.   DOI
47 Yang, Y., Callegari, C., Feng, X., Ekinci, K. and Roukes, M. (2006), "Zeptogram-scale nanomechanical mass sensing", Nano Lett., 6(4), 583-586. https://doi.org/10.1021/nl052134m.   DOI
48 Ajri, M., Fakhrabadi, M.M.S. and A. Rastgoo (2018b), "Primary and secondary resonance analyses of viscoelastic nanoplates based on strain gradient theory", J. Appl. Mech., 10(10), 1850109.   DOI
49 Akbas, S.D. (2016), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://doi.org/10.12989/sss.2016.18.6.1125.   DOI
50 Amabili, M. (2004), "Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments", Comput. Struct., 82(31-32), 2587-2605. https://doi.org/10.1016/j.compstruc.2004.03.077.   DOI
51 Babaei, A., Noorani, M.R.S. and Ghanbari, A. (2017), "Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory", Microsyst. Technol., 23(10), 4599-4610. https://doi.org/10.1007/s00542-017-3285-0.   DOI
52 Baghelani, M. (2016), "Design of a multi-frequency resonator for UHF multiband communication applications", Microsyst. Technol., 22(10), 2543-2548. https://doi.org/10.1007/s00542-015-2639-8.   DOI
53 Braun, T., Barwich, V., Ghatkesar, M.K., Bredekamp, A.H., Gerber, C., Hegner, M. and Lang, H.P. (2005), "Micromechanical mass sensors for biomolecular detection in a physiological environment", Physical Review E, 72(3), 031907. https://doi.org/10.1103/PhysRevE.72.031907.   DOI
54 Budakian, R., Mamin, H. and Rugar, D. (2006), "Spin manipulation using fast cantilever phase reversals", Appl. Phys. Lett., 89(11), 113113. https://doi.org/10.1063/1.2349311.   DOI
55 Christensen, R.M. and Freund, L. (1971), "Theory of viscoelasticity", J. Appl. Mech., 38, 720.   DOI
56 Ekinci, K., Huang, X. and Roukes, M. (2004), "Ultrasensitive nanoelectromechanical mass detection", Appl. Phys. Lett., 84(22), 4469-4471. https://doi.org/10.1063/1.1755417.   DOI
57 Mindlin, R. and Tiersten, H. (1962), "Effects of couple-stresses in linear elasticity", Arch Rat. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946.   DOI
58 Mockensturm, E.M. and Guo, J. (2005), "Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings", J. Appl. Mech., 72(3), 374-380.   DOI
59 Domaneschi, M., Limongelli, M.P. and Martinelli, L. (2013), "Vibration based damage localization using MEMS on a suspension bridge model", Smart Struct. Syst., 12(6), 679-694. https://doi.org/10.12989/sss.2013.12.6.679.   DOI
60 Ehyaei, J. and Akbarizadeh, M.R. (2017), "Vibration analysis of micro composite thin beam based on modified couple stress", Struct. Eng. Mech., 64(4), 403-411. https://doi.org/10.12989/sem.2017.64.4.403.   DOI
61 Elwenspoek, M. and Jansen, H.V. (2004), Silicon Micromachining, Cambridge University Press, United Kingdom.
62 Fu, H. and Qian, Y. (2018), "Study on a Multi-Frequency Homotopy Analysis Method for Period-Doubling Solutions of Nonlinear Systems", J. Bifurcation Chaos, 28(04), 1850049. https://doi.org/10.1142/S0218127418500499.   DOI
63 Fu, Y. and Zhang, J. (2009), "Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam", Acta Mechanica Sinica, 25(2), 211-218. https://doi.org/10.1007/s10409-008-0216-4.   DOI
64 Ghadiri, M., Mahinzare, M., Shafiei, N. and Ghorbani, K. (2017), "On size-dependent thermal buckling and free vibration of circular FG Microplates in thermal environments", Microsyst. Technol., 23(10), 4989-5001. https://doi.org/10.1007/s00542-017-3308-x.   DOI
65 Ghayesh, M.H. and Amabili, M. (2012), "Nonlinear dynamics of axially moving viscoelastic beams over the buckled state", Comput. Struct., 112, 406-421. https://doi.org/10.1016/j.compstruc.2012.09.005.   DOI
66 Pan, Z. and Chen, J. (2017), "Measurements of pedestrian", Struct. Eng. Mech., 63(6).
67 Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.   DOI
68 Naik, A., Hanay, M., Hiebert, W., Feng, X. and Roukes, M. (2009), "Towards single-molecule nanomechanical mass spectrometry", Nature Nanotechnol., 4(7), 445.   DOI
69 Niyogi, A. (1973), "Nonlinear bending of rectangular orthotropic plates", J. Solid. Struct., 9(9), 1133-1139. https://doi.org/10.1016/0020-7683(73)90020-6.   DOI
70 Paolino, P. and Bellon, L. (2009), "Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement", Nanotechnol., 20(40), 405705.   DOI
71 Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.   DOI
72 Qian, Y. and Fu, H. (2017), "Research for coupled van der Pol systems with parametric excitation and its application", Zeitschrift fur Naturforschung A, 72(11), 1009-1020. https://doi.org/10.1515/zna-2017-0249.   DOI
73 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013), "Nonlinear behaviour of electrically actuated MEMS resonators", J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006.   DOI