• 제목/요약/키워드: Integral Transform

검색결과 348건 처리시간 0.023초

GENERALIZED FIRST VARIATION AND GENERALIZED SEQUENTIAL FOURIER-FEYNMAN TRANSFORM

  • Byoung Soo Kim
    • Korean Journal of Mathematics
    • /
    • 제31권4호
    • /
    • pp.521-536
    • /
    • 2023
  • This paper is a further development of the recent results by the author and coworker on the generalized sequential Fourier-Feynman transform for functionals in a Banach algebra Ŝ and some related functionals. We establish existence of the generalized first variation of these functionals. Also we investigate various relationships between the generalized sequential Fourier-Feynman transform, the generalized sequential convolution product and the generalized first variation of the functionals.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.

APPLICATIONS OF THE REPRODUCING KERNEL THEORY TO INVERSE PROBLEMS

  • Saitoh, Saburou
    • 대한수학회논문집
    • /
    • 제16권3호
    • /
    • pp.371-383
    • /
    • 2001
  • In this survey article, we shall introduce the applications of the theory of reproducing kernels to inverse problems. At the same time, we shall present some operator versions of our fundamental general theory for linear transforms in the framework of Hilbert spaces.

  • PDF

A class of conditional analytic Feynman integrals

  • Chung, Dong-Myung;Kang, Si-Ho;Kang, Soon-Ja
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.175-190
    • /
    • 1996
  • In this paper we establish the existence of the conditional Feynman integral of certain functions which are not in the Banach algebra S of functions on Wiener space which are a kind of stochastic Fourier transform of complex Borel measures on $L^2[a, b]$. This result is used to provide the fundamental solution for the Schr$\ddot{o}$dinger equation for the forced harmonic potential.

  • PDF

A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.179-200
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $X_n:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ by $Xn(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t$ is a partition of $[0,t]$. In the present paper, using a simple formula for the conditional expectation given the conditioning function $X_n$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions which have the form $$f((v_1,x),{\cdots},(v_r,x))\;for\;x{\in}C[0,t]$$, where {$v_1,{\cdots},v_r$} is an orthonormal subset of $L_2[0,t]$ and $f{\in}L_p(\mathbb{R}^r)$. We then investigate several relationships between the conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions.