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A COMPOSITE INTEGRAL TRANSFORM WITH
SPHEROIDAL WAVE FUNCTION AS KERNEL

By P.C. Wankhede

1. Introduetion

Recenity Gupta([l] has introduced an integral transform applicable to spheroidal
wave functions analogous to finite Fourier transform and gave an account of the
simple properties of the transform as well as its application to the solution of a
few boundary value problems relating to spheroids. In a series of papers [2, 3, 4],
Wankhede and Bhonsle has established the Sturm-Liouville transform for composite
region consisting of A-layers by considering series expansion of an arbitrary
function in terms of eigen-functions of Sturm-Liouville linear homogeneous
boundary value problem for composite region consisting of kA-layers and it has
been applied to solve the problems of heat conduction and elastic vibrations in
composite plates, cylinders or spheres.

In the present paper we extend the results established in [2] to the case of two
variables by considering Sturn-Liouville problem for the prolate spheroidal geometry
defined by

—1_<_7ZSL Eﬁ<$<5z f:]_’ 2, ceeune !,

+12
and thereby we have generalized the results given in [1]. The applications of
the transform to the physical problems will be the subject matter of subsequent

WOrks.

2. Preliminary results

As regards the spheroidal wave functions the notations uged are as given in
Flammer [5].

1) Spheroidal Coordinates
The prolate spheroidal coordinates are related to the rectangular coordinates by
the transformation [5, p.6]
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x=£‘2'7_. [(1—-172) (52— 1] Y2 cos O,

y—‘é [(1—p2)(E®=1)1Y%sin ¢,

g= g né, (2.1)

with —1<p<1, 1<f<oo, 0<¢P<2r, where d is the interfocal distance. (2.2)

The oblate spheroidal coordinates are related to the rectangular coordinates by
the transformation{5, p.6]

=2 (1-)(E+D] Y cos g,

y=2-[(1-7")E+ D] *sin g,

=2 1 (2.3)
with either
—1<n<1, 0<¢é<eo, 0<p<<2r, or 0<p<l, —oco<{ oo, 0<p<2r. (2.4)

ii) The Spheroidal Differential Equations

To express the scalar wave equation (V2+k2):o in spheroidal coordinates, we
need the metrical coefficients kn’ kf’ Fe y which are defined by [5, p.10].

dx*+dy’ +dz2* =h2dn -+ hedE + hod g (2.5)

These scale factors are respectively,

7 2 i 1_?72 ] ’
— 2 -
ké— d 52_7? ﬁ 1/2
2 g5-1
hy=2- 11~ E-D1Y (2.6)
and
. J - ﬂf+$2ﬁ‘1/2
"2 | 1=
_d [ Prg (2.7
he 2. 2 ’
E211

hy=-5- 11=1)(E+ ]2

in the prolate and oblate systems. With the use of the expression for the

Laplacian V° in orthogonal curvilinear coordinates, we obtain the equations
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By, 2\ 0 J a9 d g2 —p? 9° 3,02 O\ |,
—{(1— | —(&4—1)—5+ e - -c — =0,
K (1-7%) o 9 (§°—1) 58 D75 a¢2 €3 72)~¢
(2.8)
and
[ A S W) A 3. O 2E D) | =0
Xz on 0 o ErnU-1H I
(2.9)
in the prolate and oblate cases respectively. In these equations we have set
c= é kd. (2. 10)

[t is important to note that by transformations
E—>+i8, c=ic, (2.11)
we obtain oblate system from prolate system and vice-versa.
By the usual procedure of separation of variables, solutions of 2.8 and 2.9
may be obtained in the Lame products,

Crin=Syn(6 1) Ry, G g (2.12)
and

Goun=Smn( =6 MRy, (—ic, in) &> me, (2.13)
respectively.

The four solutions Sm(c, 7), Rm(c, &), Sm( —-ic, 1), and R,__(—7c, i) satisfy

mn

the ordinary differential equations

"gn— :(1 —7%) jﬁ Smn(c, ??): :Rm—c%?? 1?72?2 :Smﬂ(c, n)=0 (2.14)
fg :(52_ 1) js R, (c, E): — izmﬂ_c252 ; 55”_?-1 :Rm(c, £)=0 (2.15)
;ﬁ :( 1-7%) fn Sy — 26, n): + :;t,}m+c2722 liz :Sm( —7¢, 7)=0 (2.16)
;5 :(52+ 1) jé' R_(—1c, z'): — :/'imn—-c‘?észy-héffl ;Rmﬂ( —7¢, 16)=0 (2.17)

The separation constants 4, and m are the same in the first of these equations,

and like-wise in the second pair.
iii) Prolate spheroidal angle function of first kind is given by [5, p. i6]

(1) 2 m
Seam= 3 &7 Pl () (2.18)
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Here and in the sequel, the prime over the summation sign indicates that the
summation 1s over only even values of » when #—m 1s even, and over only odd
values of » when #—m is odd.

1v) Prolate sphercidal angle function of second kind is given by [5, p.26]

sP = 5 ™", @ (2. 19)

= —00

v) Prolate spheroidal radial function of first kind is given bv [5, p.31]

| 2 m/2
Ri:(c,f)" ' 1(2 +)7 <§-21)
Z dmn( ) M7
r=0,1 7!
X Ci‘, ;T ndm(c) (2m+¢-)' 7 2 (€ ) (2.20)

r=0, 1

where 7, . (c£) is the spherical Bessel function of first kind
vi) Prolate spheroidal radial function of second kind 1s given by [5, p. 32]

2 m/2
2 1 —1
an:(c, E)=—— o Gl (E 5 )
> d_(c) ,
r=0,1 7.
< E z.r+m—nd:m(c) (2ﬂ;+ ?‘) ﬂm+r(6‘§_), (2- 21)
r=0,1

where 7, [(c§) is the spherical Bessel function of second kind.

vii) Recursion formula for dm(c) is given by [5, p.17]

(Cm+r+2)(2m+r+1) 2,y
(2m+2r+3)(2m—+27+5) ¢ i"+2( 2

' S(m+r)(m+r+1)— 2m —1 97 ,mn
-l—[(m—l—r)(m Fr+1)—A4,,,(¢) (om+ 27 — D(2m 127 +3) ]d (¢)

( _1) ‘ ma
(2m—l—2:—73)(2?;+27—1) _,(e)=0, (#=0). (2.22)

viii) Normalization constant is given by [5, p.22]
_f S*mu(c’ W)Smﬁ' (e, ﬂ)d 77:5 nn’N mn
—1

where

o (r+2m)! (c:f’”lm)2
N Zl Or+2m+1)r!

(2.23)
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3. Sturm-Liouville problem for composite prolate spheroidal region

Let us consider a system of eguations

oy 8 0 e gy 0 m ) | g 22 2
_m{ an (1=7") 57+ oE (E°-1) & 05, -B,co(E°—17)

- 1<n<1, EZ-SE'iEiH, 1=1, 2, -+ [,

subject to the boundary and interfacial conditions

__a‘.’]_ aaé .X?;z, n, 2(77: €)+k0Xm’nl 2(7?’ é)ij:El:O, k0_>_0’
0
__a[ 36 Xm, ﬂ,!(n! é)"]“k; 'Xm,jz_f (77: E)]€=fr+1 =O, k‘rzo,

J
29 aaé:- Xin. n,i(m é)lg___gfﬂ:ai%—l aé Xm. H.f'l‘l(??’ E) n=£

i¥+1

o f%.’g‘ [X?H,n,z'+1(7?' 5)_—X?JZ.?3,?:(72’ E>]$=Ei+1’ t=1,2 - (Z_l)’

where

2 .
c -Eigenvalue of the problem

H

. 2k
a,, B, -Characteristics of " layer

. 2. -
R -Characteristic of 7 interiace
h,  -Surface coefficient at §=¢,
h, -Surface coefficient at §=¢, ..

'Xm, n, 5(77’ E) =0,

(3.1)

(3.2)

Fquaticns (3.1) and (8.2) constitute the mathematical formulation of the Sturm-

Liouville proplem for composite prolate spheroidal geometry defined by (—1<»<1,

E<E<E, . ., =1, 2, -, D.

4. Solution of the problem

Since the separated differential equations in variables 7 and ¢ are each of second
order, the solution of (8.1) will involve prolate spheroidal angle functions of first

and second kind and prolate spheroidal radial functions of first and second Kkind

given in (2.18), (2.19), (2.20) and (2.21) respectively.

Hence the general solution of (3.1) is

} L (1) —-CI'E' 2 _(2) 73' ]
Xm,n,z'(m E): A?ijRm?'!(\/-ﬂ—z:—cn: E)‘FA{” mn( -5 c;g:é)

Z
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—
3 (1) 4 (2) x; .
>< " Mﬁ(\/ B _cn ? ) n mn(N ‘—-B;-cﬂ ’ ﬂ):l (4. 1)
gggégéz 1’ 3:1: 2! "t lr -lgﬁgl, ”:1: 2:
where A4 zf; (7=1, 2, 3 and 4) are arbitrary constants.

The function SE::):(%' n) is singular at =21 and hence A:-lﬂ must be zero for
the finite form of the solution (4.1).

So the general solution (4.1) becomes

p—

(O | & @f | &; 1. | a;
X (n,&)=|M, R —C + N, R c. S , 4,2
o i = MR, (\ B, " 5) " <N B; " 5)_ ’”ﬂ(w B " T’) 42

—-1<n<1, §<6<6;., =1 2 [, n=1, 2

where M, . and N, are arbitrary constants.

Substituing the solution (4.2) in the equations (3.2), we get a system of 21
simultaneous equations and from these we can calculate M, and N, ,. Also

B
from the system of 21 simultaneous equations on eliminating M; , and Nz .
get the frequency equation. After substituting the values of Nz- . and N, ,

get the required solution of the Sturm-Liouville problem (3.1) subject to the
boundary and interfacial conditions (3. 2).

5. Orthogonality of eigenfunctions X n. {70 €)

Let X,, (&) and X . m-(p, &) be the two solutions of (3.1), then

% 2 | J 2 1\ J ) m2 } |
(6 ){ (1 ) 377 36- (E 1) 35 (52__1)(1_?72) Xm,n,z(m E)
+8; ¢, X, (0 =0, (5.1)
and
o v 5 2 g
. 1" (1 2) 1 ( —1 5 }X , 7
&= |7 e D e X 1)

+8; ¢; X, . (n,&)=0, (5.2)

—1<n<1, §<6<E,., i=1 2 -, L.

We multiply (5.1) by (€-7D X, (0 &, (6.2 by E-1DX, , (0 &,

subtract and integrate with respct to » and & in the above intervals to obtain
Erer 1

z=1{ ff [ m, g, i § )5 {(1 ) 7 Xmm(mé)]
& —1
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m 1, 3(77! E) {(1_72 ) 37? m 7, 3(77- 5)}:]63'54572}

; § i1 1
+z=21{ai ;:'ff' _f; [ m,J, 2(77:5) 55' {(52_1) 6 mn 2(7?! f)}
=Xy, i )55 (€ DL X,y .40 O} | )

Ets 1

{
= 328,(c}~c}) f [ E-1DX,,, (. OX,,; (n Odkdr.
B —1

i'
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(5.3)

Let I, and I, denote the first and second group of terms in the left hand side

of (5.3).

Integrating by parts with respect to n, the value of I; can be easily proved to

be zero.

In I, changing the order of integration and on integration by parts with

respect to £, we obtain
1

2-—2 a; [ m, 7, i< E)(E°-1) 3% X, 0,4 §)

1=1
—1

?‘ﬂ n, 3(721 '5)(52-—1) é m .7 3(7?! S)]

&= Em
&= E:

On changing the order of integration and summation, we obtain

1

I= | X 1 €101) (&141- D) aii" Kopom, ()

— 1

—; Xm, n,!(ﬂ' $!+1> {(512+1_ 1) a% Xm,j,l(ﬁ: 5)}f=§}+1} dﬁ

] —
T I :_é[[a’ Xm 7, (7, $z+l)<€z+1_ [ a(zf m,n,i(m 5)]

m 7. z(ﬂ: éz+1)($z+l""1) [ 5 m.f.i(ﬂ' 5):[5=&+1

{ i 1%, 1, i1 € DR~ D[ G K110 O],

_az+1Xm n, z+1(771 €z+1)(63+1—1)[ 0¢ Xm,j,z'+1(7?' E):|E=$i+1]]dn

— f alxm_j']_(ﬂ: 61)(5%_1)[ aa.f Xm:”-l(??' 6)]§'=E
1 i

e=¢,.,



254 P.C. Wankhede

_alxm, n, 1(77, 61) (E%'— 1) {%X”;J, 1(n, $)J£=Eld77.

Using the boundary and interfacial conditions for the eigenfunctions

Xy n{m§) and X, ; (5, §), we have
1

I2:f [(EZHI—I){{X,,,J,;O?: $!+1)|:[_kgxm,n.!(7]rél+l] ]}

—1

_(§2J+1—1){{Xm_ﬂ_;(7h $z+1>[—k;Xm.fJ(77’ 6~’+1)]”d0

1

+ ;ii[(szm ~D[{ X, i E 100 Ko i41C1 i)
—1

_'Xm, n,i(ﬁ' Sz'-}-l)] _X:-?z,n,i(??i $£+1)_R%;[Xm_j,i+1(7?, éi IJ_Xm,j,z'(ﬂr $£+1)]]
_{er!'-fﬂ(ﬂ’giﬂ) éz. I:Xm,n,*i—l—l(m 5i+1)“Xm,n,i(7?:5£+1):

__Xm, n,z'+1(77* $i+1)'%; ['Xm,j,i+1(7?: Ez'+]_)__Xm'j’ 3-(‘!7, Ei+1)]:']]d7?

Bl j [(521_1){erf-1(72’ El)kOXﬁz, n,l(n! §:-1) "Xm.n,l(v’ éLzl)k()"yfm,j,_1(7?n El)}}dﬂ
—1

=0.

Hence from (6.3) an orthogonality relation of the eigenfunctions X n T &)
can be expressed as

. E 1
A(n) [izzlﬁfg | :/; E =1 1,0, €)X, 7,6m, ) | =0, (5.4)

where +/A(n) is the normalising constant and ¢ nj is the Kroneker delta which
takes the value zero if ##;7 and unity if #n=j.

6. Definition and the inversion of the transform

We define the integral transform by the system
€1 1

u; (€,)=p f f (E4=n0X,, . (0 §un, §)dEdn (6.1)
& 1
=1, 2, «.., I,

where ”z'*(%) is the integral transform of #/(7, &) with respect to the kernel

X, ﬂ_i(n, &) and weight function (Ez—-nz).
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In view of the completeness of the eigenfunction expansion and the orthogonal
property (5.4), the inverse transform of (6.1) is readily obtained, provided that
u,(n, &) (i=1,2...7) are continuous and have piecewise continuous first and second
derivatives in (—1<p<1, §,<6<¢&;.1, =1, 2, ..., 1) and satisfy boundary and

interfacial conditions of the eigenvalue problem [6-p.293], as

{
()= AWK, 1,6 Tu;"(e,) 6.2)

—1<p<1, §<6<§;., =12, ...1, n=1.23 ...,
where the coefficients A(z#) are obtained from the relation (5.4).

7. Property of the transform

Let us consider the effect of the integral transform defined in (6.1) on the

group of terms

a; %] 2. 0 d .2 0 2
- S (1—n )—5—+- -1 — . o (7, 71
53(5-2_7?2) {377 ( 7?) an aE (é' ) 35 (62—1)(1—772) ]uz(p f) (7.1)
—1<n<], Eigégéi.u, =1, 2, 3, ..., L.
We have
1 Err 1 3 ,
= E[i[;a'}fm 1, z(ﬁré)[‘g_{(l 7%) a7 u(n,{f)} _é—{@ —~1) 3{3 (7, 6)]d$dp
l ff-H 1
'=1 f ffaxm 1, 2(77: &) 677 { 1'_7?2)“_'—35 (7, S)dfdﬁ
z E‘:-H 1
I,5_51 f fat mnz("?!g) g {Ez 1) OC ”(ﬁsé)]dédﬂ. (7.2)
1

i

Let I, and I, denote the first and second group of terms respectively in the

right hand side of (7.2).
Integrating by parts twice with respect to 5, we obtain
i 1

0 (o1 2y 0.
f fa ‘(72’ 6)_972_{(1_7?) a-,? m.n.i(n’ é)]dédﬁ (7- 3)
Changing the order of integration in [, and integrating by parts with respect
to & twice, we have

I ! g $f+1
=5 [ [annin E-Dggun O-aun EYE D 55X, 1O
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1 £f+1
—1 fi
Changing the order of integration in the last integral above, we get
1
!

L= { [ @, i1 )@= Dggu,(n, ©

=1

— gt (n E)E = D)X 0,0 é)Ff*‘dn

-+ jmf et (7, §) —é_—{(g-‘z— 1) n. 5, {00 é)}dé’dp} (7.4)
—1

I

Substituting the values of I, (7.3) and I, (7.4) in (7.2) and using the fact
that X,, ,, ;(n, §) is the solution of (3.1), we obtain

m (7, €
<$2—1)<1—n2> 4

='_2{: [ mﬂ(n,f)@z—l) 5 —s= (7, &)

— o (7, é)(é —1D—% E- m ”, z( €)]£i ld"?'—c 22” (Cﬂ)

Changing the order of sumation and integration in the right hand side of

above, we have

1 _ 0\ x )
m 1,0 (T €
B f {af‘xm,n,z(ﬂ:$z+1)(612+1_1) 365 o, (my §) — 3@,} !(; Ey o }d"?

+- f {i—l[{a’ Xm n, (7, $z+1)(éz+l 1)[ 3% %1, é):‘

—oU (72, Eﬁ.l) (€z+1_1)[ é m, n, 5(77’ é>:|f=f.r+:

{ z+1Xm n, z+1(77=' $z+1) (Ez+l_1)["'£?ui+l(72! é)]§=§'r+l
az+1“z+l)(77: sz-{-l) ($z+l [ ai":* Xm n”, z'+1(7’ E):'g? E,H]]}d’?

$=EI+1

_ 2 0 _ag Ko 0 1K 6D T
fl {alxm,n’l(ﬁ: E']_)CE 1 1)— aé- “1(77’ ‘;E-) m N 1(7?, é.,) -

»d']?
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L
-— cﬂzgui (C”)- (7. 5)

Using boundary, interfacial conditions (3.2) in (7.5) and rearranging the

terms, we get the required property of the transform as

! $‘+1 1 B X,
2_. 2\y ¢ J A
J 2 0 m° } 1
—-—1 e e * ] d d
+ (E%—1) Tty u;(n E)_ §dn

H
=X 11 €150 €1~ DG n O+ hpn, O] d
g

£=&1
l —
+f ([ X im0 €= DaFrun - a0 O 0],

—1

"‘Xm,n,z'+1(77: §it1) (€§+1 —1){0-’£+1 3% i 410 §)— —}%,z_—[”iﬂ(m &)

1
w0}, o[ {Xpua@ 80 E-D]argp &)
)

I *
— hou, (1, 5)] s ]dn—cfi___zluz- (c,) (7.6)

Hence (7.6) is the fundamental property of the integral transform defined in
(6.1), which removes the group of terms quoted in (7. 1).

. Discussion

The integral transtorm defined in (6.1) is nothing but the generalization of
the transforms defined in [1] and the results in [1] can be deduced from (6.1)

by specializing the coefficients and parameters involved their-in.
Further it is observed that the range of integration for » can be made (0, 1) by

adding one more condition

_ 0
Z‘z'(‘??i ‘5) 7?=0""‘0 or 77"7'“%3'(7?: é) 7?=0 ’

in which case the transform defined in (6.1) will be called the odd or even

transform respectively.
We can also consider the transfrom for the region (pj'<72<17j+ p §.¢ _"\:53-+ 1>

=42, ..., kB i=1, 2, ..., ]) following the procedure given in [2].
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The results presented here can be extended to oblate systems by using trans-
formations (2.11).

Author wishes to thank Dr. B.R. Bhonsle, Professor and Head, Department
of Mathematies, Marathwada University, Aurangabad, for his guidance during
the preparation of this paper.
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