• Title/Summary/Keyword: Integral Compensator

Search Result 53, Processing Time 0.025 seconds

Robust Stability of a Servosystem with Multiplicative Uncertainty (곱셈형 불확실성을 갖는 서보계의 강인한 안정성)

  • 김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.57-62
    • /
    • 1996
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem to the unstructured uncertainty of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is independent of the gain of the integral compensator. An example is presented, which demonstrates that the tracking response of the 2DOF servosystem with uncertainty becomes faster when the integral gain made larger under the robust stability condition.

  • PDF

A Study on a Two-Degree-of-Freedom Servosystem Incorporating an Observer (관측기를 갖는 2자유도 서보계의 구성에 관한 고찰)

  • Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which integral compensation is effective only when there is modeling error for disturbance input. The present paper considers the design problem of 2DOF servosystem incorporating an observer. It is shown that if a state feedback gain and a observer gain satisfy a condition, the integral effect does not appear when modeling error or disturbance input exists. This result means that the servosystem does not behave as a 2DOF servosystem.

  • PDF

Nonlinear Friction Compensator Design for Mechatronics Servo Systems Using Neural Network

  • Chung, Dae-won;Nobuhiro Kyra;Hiromu Gotanda
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.111-116
    • /
    • 2001
  • A neural network compensator for stick-slip friction phenomena in meashartonics servo systems is practically proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensa-tor plays the role of canceling the effect of nonlinear slipping friction force. It works robustly and effectively in a real control system. This enables the mechatronics servo systems to provide more precise control in the digital computer. It was confirmed that the con-trol accuracy is improved near zero velocity and points of changing the moving direction through numerical simulation. However, asymptotic property on the steady state error of the normal operation points is guaranteed by the integral term of traditional velocity loop controller.

  • PDF

Design of a CDBC Using Multirate Sampling (Multirate 샘플링을 이용한 CDBC의 설계)

  • 김진용;김성열;이금원;이준모
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes a design method of a CDBC(Continuous-time Deadbeat Controller)system that takes into account the response between the sampling instant and using second-order smoothing elements. The continuous deadbeat controller is composed of a serial integral compensator and a local feedback compensator introduced into the state feedback loop. A DC servo motor is chosen for implementing CDBC algorithm. Especially according to the variable input and disturbance, corresponding CDBC design method is suggested. A Matlab Simulink is used for simulation with the Motor parameter. By computer simulations, control inputs and system outputs are shown to have desirable property such as smoothness.

  • PDF

A Study on Robustness of a Two-Degree-of-Freedom Servosystem with Nonlinear Type Uncertainty(II) - Rubust Stability Condition (비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(II) - 강인 안정성 조건)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.99-105
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a robust stability of this 2DOF servosystem with nonlinear type uncertainty in the system, and a robust stability condition for the servosystem is introduced. This result guarantees that if the plant uncertainty is in the permissible set defined by the condition, gain tuning can be carried out to suppress the influence of the plant uncertainties and disturbance inputs.

  • PDF

An Anti-Windup Compensation for Systems with Saturation Actuators (포화 요소가 있는 계를 위한 와인드업 방지 보상 방법)

  • 장원욱;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1332-1340
    • /
    • 1992
  • A novel approach based on a nonlinear compensator is prposed to prevent 'windup', which is caused by the saturation of the acutator and the integral action of the controller. The anti-windup compensator is located between the conventional linear controller, designed neglecting the saturation, and the actuator. It was proven based on the describing function method that, if the closed loop control systems are stable assuming no saturation, then there may exist a range of compensator gain which prevents any limit-cycle. The computer simulation results show that the compensator proposed in the manuscript can eliminate the limit cycle and improve the transient response.

Integral Error State Feedback VSC for a DC Servo Position Control System (직류서보 위치제어 시스템을 위한 편차적분 상태궤환 가변구조제어기)

  • 박영진;이기상;홍순찬
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.88-95
    • /
    • 1994
  • A scheme of IESFVSC(Integral Error State Feedback Variable Structure Controller) is proposed for a DC servo position control system with the disturbances which do not satisfy the matching condition. The proposed control system is composed of servo compensator and state feedback VSC. The servo compensator enhances the robustness of the control system against various types of disturbance, and makes effective tracking possible without using error dynamics. The IESFVSC is applied to the practical design of a robust DC servo control system and the control performances are verified through theoretical analyses and simulations.

  • PDF

A Study on Robustness of a Servosystem with Nonlinear Type Uncertainty (I) - A Synthesis of 2DOF Servosystem (비선형 불확실성에 대한 서보계의 강인성에 관한 고찰(I) - 직달항을 고려한 2자유도 서보계의 구성)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.91-98
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers a synthesis problems of this 32DOF servosystem with direct transfer term in the system representation. And, a method how we may obtain a gain such that desirable transient response is achieved, is proposed in the presence of the modelling error and disturbance input.

  • PDF

Robust Output Feedback Control Using a Servocompensator (서보보상기를 사용한 견실 출력귀환제어)

  • Lee, Ho-Jin;Lee, Keum-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.217-221
    • /
    • 2007
  • This paper deals with the robust nonlinear controller design using output feedback for a Chua circuit which is one of the well-known nonlinear models. First, an exosystem for reference signal tracking is defined, and error dynamic equations are derived from the differentiation of the output tracking error equation. The normal sliding surface is modified using the integral type servo compensator. The parameters in the equations of the modified sliding surface and servo compensator are determined by using the Hurwitz condition of stability. Especially the error signals can't be obtained directly from the output because all parameters are assumed unknown. So instead, a high gain observer is designed. From this estimated error signals, a stabilizing controller is designed. Simulation is done for demonstrating the effectiveness of the suggested algorithm.

  • PDF

Design-Oriented Stability of Outer Voltage Loop in Capacitor Current Controlled Buck Converters

  • Zhang, Xi;Zhang, Zhongwei;Bao, Bocheng;Bao, Han;Wu, Zhimin;Yao, Kaiwen;Wu, Jing
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.869-880
    • /
    • 2019
  • Due to the inherent feedforward of load current, capacitor current (CC) control shows a fast transient response that makes it suitable for the power supplies used in various portable electronic devices. However, considering the effect of the outer voltage loop, the stable range of the duty-cycle is significantly diminished in CC controlled buck converters. To investigate the stability effect of the outer voltage loop on buck converters, a CC controlled buck converter with a proportion-integral (PI) compensator is taken as an example, and its second-order discrete-time model is established. Based on this model, the instability caused by the duty-cycle is discussed with consideration of the outer voltage loop. Then the dynamical effects of the feedback gain of the PI compensator and the equivalent series resistance (ESR) of the output capacitor on the CC controlled buck converter with a PI compensator are studied. Furthermore, the design-oriented closed-loop stability criterion is derived. Finally, PSIM simulations and experimental results are supplied to verify the theoretical analyses.