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Abstract

In order to reject the steady - state tracking error, it is common to introduce integral com-
pensators in servosystems for constant reference signals. However, the mathematical model of
the plant is exact and no disturbance input exists, the integral compensation is not necessary.
From this point of view, a two — degree - of - freedom(2DOF) servosystem has been proposed,
in which the integral compensation is effective only when there is a modeling error or a distur-
bance input. The present paper considers robust stability of this 2DOF servosystem to the uns-
tructured uncertainty of the controlled plant. A robust stability condition is obtained using
Riccati inequality, which is independent of the gain of the integral compensator. An example is
presented, which demonstrates that the tracking response of the 2DOF servosystem with

uncertainty becomes faster when the integral gain made larger under the robust stability con-

57

dition.
1. Introduction property, that is, tracking reference signals in
the steady state robustly against the plant
One of the most fundamental objectives uncertainties and disturbance inputs. To reject
required of control systems is the robust servo- the steady — state tracking error to constant
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reference signals, it is common to introduce
integral compensators. However, the mathe-
matical model of the plant is exact and no dis-
turbance input exists, the integral compensa-
tion is not necessary as implied by the Intermal
Model Principle'. From this point of view, a
two - degree — of — freedom (2DOF') servosystem
has been proposed®* in the context of 1.Q regu-
lator theory, in which the integral compensa-
tion is effective only when there is a modeling
error or a disturbance input.

A similar problem has been considered
in4,5). In the recent literatures, stability condi-
tion of the 2DOF servosystem to the structured
uncertainty has been proposed®”, which is inde-
pendent of the gain of the integral compen-
sator.

This paper considers robust stability of the
2DOF servosystem to the unstructured uncer-
tainty of the controlled plant. A robust stability
condition is obtained using Riccati inequality,
which is independent of the gain of the integral
compensator. An example is presented, which
demonstrates that the tracking response of the
2DOF servosystem with uncertainty becomes
faster when the integral gain made larger

under the robust stability condition.

2. Two — Degree — of - Freedom
— Servosystem

Let us consider a linear time invariant plant

described by the state equation

x(t)=Ax(¢)+Bu(t)
y(t)=Cx(t) (1)

where x&ER", u&<R"”, yER” are the state, con-
trol input, controlled output, respectively, and
A, B, C are real constant matrices of proper
dimensions. We require this plant to track a

step — type reference signal

Fig.1 Atwo degree freedom servosystem

ra=0m
r(t)=
r (<0 (2)
in the steady — state with no error. For this, we

assume that the pair (A, B) is stabilizable,

A B
rank =n+m (3)
cC 0

and the state x is measurable.
The 2DOF servosystem proposed in* * is

illustrated by Kig. 1, the state equation of

which is
x(t) A+ B(F,+GF,; BG!|x(t) . BH, o
= r
wlt) -C O ||wt) I
x(2)
(t)={C O (4)
Y [ ]Lj(t)J

Here, we consider the gain F|, as a stabilizing
one for (A, B), while it is chosen as an optimal
regulator gain for a quadratic performance
index in2,4). The gains F, and H, are defined
by

F,=CA+BF, '
Hy=[-CA+BF, 'B] ! (5)
and G is any gain such that the closed - loop

system (4) is stable.

The system matrix of (4) is represented as

A+ B(F,+GF) BG
-C 0
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_{1 O{A+BF0 BG I 0]‘
C-Fy I 0 FBG|-F, I
(6)

which means that stability of the closed - loop
system(4) is equivalent to that F,BG", is stable
matrix A choice of G so that F\,BG is a stable

matrix, is
G=-R'\WFB"™W (7)

where R and W are arbitrary positive definite

matrices. This is seen from

FIBG:W 1/-2[_ Wiz FlBR'l(F]B)T WIZJWIL!
(8)

that is, F;BG is similar to a negative definite
matrix, where F'\B is nonsingular**.

The gain (7) is optimal for the pair of a
quadratic perfomance index and the augment-
ed system composed of the plant (1) and inte-
gral compensators, when the gain F|, is chosen
as an optimal regulator gain for the plant. We
use this particular gain extensively in the pre-

sent paper.
3. Robust Stability

The above stability analysis is valid when the
system description (1) of a plant is an exact
model. However, system descriptions we deal
with are generally only nominal models of
plants, and we should suppose that there are
modeling errors. In the recent literatures, sta-
bility condition of the 2DOF servosystem to the
structured uncertainty has been proposed®”,
which is independent of the gain of the integral
compensator. In this section, we present a
robust stability condition on unstructured unce-
rtainty.

Let us describe the state equation of an

uncertain plant as

x(t)=Ax(t)+Biu(t)

y(t)=Cx(t)
a()=ult)+ug(t)
us(s)=A(s)u(s) (9)

where A(s) is an input multiplicative perturba-
tion as the unstructured uncertainty defined as

1As) | w<y (10)

and 2&R" is input of perturbed plant, u;&R" is
output of perturbation. For symplicity, no dis-
trubance input is considered. Then, the 2DOF
servosystem (4) which is shown in Fig. 2 is rep-

resented as

rm] ~ [A +B(Fo+GF) BGJ {me

W) | -C 0 ||w
BH B
{ ; O}ru){O}uam (1
where G=G,W.
Here, we transform the 2DOF system (11) using
)] [I O]«
= (12)
20 [F1 1w

to obtain the representation

[#t)] [A+BF, BGHW)}{ BJ "
! } = Us

a0 FBG |! 2(t) B
x(t)
ty=[F, G (13)
ult) =[Fo ]L(t):J

This is the system representation from u; to

u for r=0. And we define the transfer function

Fig. 2 A two - degree freedom servosystem with
multiplicative uncertainty
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from wus to u as T, ,4(s).

Lemma The necessary and sufficient condi-
tion for the 2DOF servosystem (9) shown in
Fig. 2 to be robustly stable for the uncertainty
is that the closed loop system is stable when
Als)=0 and

1
“ Tuu(‘\(S) H m<7'y (14)

holds®.
Using this lemma, we now consider robust
stability of the system. From the system repre-

sentation (13), define

i} w
AW < A+BFo  BGs }
0 F1BG,W
5~ 1s)
B:
F.\B
COW)=[Fy GoW) (15)

and positive definite symmetric matrix P(W)
~ P 0
PW) = (16)
0w

where P is a positive definite solution of Lyapu-

nov inequality
PA+BF)+(A+BF)'/P<0 (17

The existence of P is guaranteed by the sta-
bility of A+ BF,,. Here, from equations (15) and
(16), we describe A(W), C(W), and P(W) as A,
C(I) and P(I) when W=1, respectively. From

this, assume
P AU +ATD P(N<0 (18)

holds®.

The following theorem can now be demon-
strated.

Theorem For the structured uncertainties
AA, AB, AC and r>0, there exist a positive defi-

nite matrix A1) and positive definite number p

such that Riccati ineguality
~ ~ . ~ ,2 ~ e AT ~
P(DA(D + 4 (1)P<1>+”TP<1)B B P
+uC (DG <0 (19)

holds, then the servosystem (9) is robustly sta-
ble independently of the tuning parameter W.

Proof : Equations (15) and (16) imply that A
(W), C(W) and P(W) are represented as

- - 110
A(W):A(I){0 ji

W
~ - 410
CW)=C(I
0w
-l 0
PW) = P(I) 20
0w

Using these relations and assumption (18),

Lyapunov inequality
~ ~ P ~ 2 -~ 7
POWIAW) + 3T (WIP(W) + %P(W)é B

pow+ u&" wicowy =| L °
+ ) =
ne 0w

APDAUA DRI+ T P g BT P

p . I 0
+uC (He| - 0 <0 (2D

w

is obtained which concludes robust stability of
the system (11) to the unstructured uncertainty
Al || Ats) || o <) for any W>O0.

Now, show that there always exists a positive
definite matrix P(I) for which the assumption
(18) holds*. For this, condsider

F=P( AD+AD P (22)

the negative definiteness of which is equivalent

to (18). We decompose I into four blocks as

= T T
r~| " ‘“J (23)
T T
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where

Iy =P(A+BF,)+(A+BF,P+PBGF,
+(PBGyF "+ FIF\BGyF, +(F1F\BG,F,

I'y=PBGy+FIF,BGy+(F,BGF,f

[y =(PBG,F+(FiF,BG,Y +F,BGF,

[yy=F\BGy+(F,BGy) (24)

In (24), I, is negative definite since F,BG,
= #\,BR YF,B)". Therefore, negative definite-

ness of I is equivalent to that of

r“ - rlz r227l F21:P(A+BF0)+(A+BFU)TP
+(1/2)PBR ' B"P (25)

Here, the sum of first and second terms in
the right side is negative definite as seen from
(17). The third term is positive semidefinite,
but square in P. This implies that, by choosing
a sufficiently small P satisfying (17) which
always exists, we can make (25) negative defi-
nite and conclude negative definiteness of I" of
(22).

When we choose an optimal regulator gain
for the nominal plant as the stabilizing gain F
for (A, B), the positive definite solution P of the

Riccati equation
PA+A'P - PBR 'B'P+Q=0 (26)

where @ and R are positive definite, always

makes I' of (22) negative definite. Acturally, for
Fo=-R 'B'P (27

the right - side of (25) becomes negative defi-
nite -@ —(1/2)PBR ' B'P.

4. A Numerical Example

We present an example to illustrate the
change of behaviors of the 2DOF servosystem
(9) when we increase the tuning parameter W
in the gain G of (7). Let the matrices A, B, C of
the plant (1) be

[ taefeoun

We adopt an optimal regulator gain for stabi-
liz - ing(A, B) so that the assumption(18) holds
automatically. We use the Riccati equation (26)
with

(28)

R=I, @=diagl0.5, 1.5} (29)

The positive definite solution of (26) is

0.17 0.04
P= (30)
0.04 4.36

From this, the gains are com - puted as

Fo=[-0.04 -4.36]

F,=[-066 -0.28]

H,=3.58

G,=0.28 (31)

These results satify the assumption (18). And
the condition (19) in theorem is holds when pu=
0.5, y=0.45. Thus it is clear that the 2DOF ser-
vosystem (9) is robustly stable for the un -
structured uncertainty which is in the class
denoted by

| As) || <y=0.45 (32)

From this, consider an input multiplicative

perturbation as the unstructured uncertainty
(s+0.22)

Als)= — OASW (33)

The reference signal is r, =1 and the initial
state x, and the initial value w, of the integral-
compensator are 0.

Fig. 3 is the simulated results corresponding
to the cases of a=1, 10 and 100 in W, respec-
tively. Where the dashdot line is the behavior
of the controlled output in case of a=1, the
dashed line is that of a= 10, and the solid line
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Controlled Outputs

o 5 10 15 20
t

Fig.3 Step response

is that of «=100. And the dotted line shows the
nominal behavior of the 2DOF servosys-
tem(9).We see that we can achieve a fast track-

ing response by increasing .
5. Concluding Remarks

In this paper, a robust stability condition for
a 2DOF servosystem to the unstructured unc-
ertainty of controlled plant, which is indepen-
dent of the gain of the integral compensator is
presented. It was demonstrated that we can
carry out high - gain integral compensation
preserving robust stability to achieve fast tran-
sient responses on the untructured uncertainty.
State feedback was used extensively in this
paper. It is interesting to expend these results

to the output feedback case.
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