• Title/Summary/Keyword: Integer Linear Programming

Search Result 256, Processing Time 0.029 seconds

Optimal Weapon-Target Assignment of Multiple Dissimilar Closed-In Weapon Systems Using Mixed Integer Linear Programming (혼합정수선형계획법을 이용한 다수 이종 근접 방어 시스템의 최적 무장 할당)

  • Roh, Heekun;Oh, Young-Jae;Tahk, Min-Jea;Jung, Young-Ran
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.787-794
    • /
    • 2019
  • In this paper, a Mixed Integer Linear Programming(MILP) approach for solving optimal Weapon-Target Assignment(WTA) problem of multiple dissimilar Closed-In Weapon Systems (CIWS) is proposed. Generally, WTA problems are formulated in nonlinear mixed integer optimization form, which often requires impractical exhaustive search to optimize. However, transforming the problem into a structured MILP problem enables global optimization with an acceptable computational load. The problem of interest considers defense against several threats approaching the asset from various directions, with different time of arrival. Moreover, we consider multiple dissimilar CIWSs defending the asset. We derive a MILP form of the given nonlinear WTA problem. The formulated MILP problem is implemented with a commercial optimizer, and the optimization result is proposed.

Sufficient conditions for zero duality gap of lagrangean relaxation

  • Kim, Sehun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.10 no.2
    • /
    • pp.24-27
    • /
    • 1985
  • This paper presents sufficient conditions for zero duality gap of Lagrangean relaxation in mixed integer programming problems and discusses about an algorithm which updates multipiers using the dual varibles of the linear programming constructed by fixing integer variables.

  • PDF

An Optimization Model for O&M Planning of Floating Offshore Wind Farm using Mixed Integer Linear Programming

  • Sang, Min-Gyu;Lee, Nam-Kyoung;Shin, Yong-Hyuk;Lee, Chulung;Oh, Young-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.255-264
    • /
    • 2021
  • In this paper, we propose operations and maintenance (O&M) planning approach for floating offshore wind farm using the mathematical optimization. To be specific, we present a MILP (Mixed Integer Linear Programming that suggests the composition of vessels, technicians, and maintenance works on a weekly basis. We reflect accessibility to wind turbines based on weather data and loss of power generation using the Jensen wake model to identify downtime cost that vary from time to time. This paper also includes a description of two-stage approach for maintenance planning & detailed scheduling and numeric analysis of the number of vessels and technicians on the O&M cost. Finally, the MILP model could be utilized in order to establish the suitable and effective maintenance planning reflecting domestic situation.

An Optimal Decomposition Algorithm for Convex Structuring Elements (볼록 구조자룰 위한 최적 분리 알고리듬)

  • 온승엽
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1167-1174
    • /
    • 1999
  • In this paper, we present a new technique for the local decomposition of convex structuring elements for morphological image processing. Local decomposition of a structuring element consists of local structuring elements, in which each structuring element consists of a subset of origin pixel and its eight neighbors. Generally, local decomposition of a structuring element reduces the amount of computation required for morphological operations with the structuring element. A unique feature of our approach is the use of linear integer programming technique to determine optimal local decomposition that guarantees the minimal amount of computation. We defined a digital convex polygon, which, in turn, is defined as a convex structuring element, and formulated the necessary and sufficient conditions to decompose a digital convex polygon into a set of basis digital convex polygons. We used a set of linear equations to represent the relationships between the edges and the positions of the original convex polygon, and those of the basis convex polygons. Further. a cost function was used represent the total processing time required for computation of dilation/erosion with the structuring elements in a decomposition. Then integer linear programming was used to seek an optimal local decomposition, that satisfies the linear equations and simultaneously minimize the cost function.

  • PDF

Voltage Control and Security Assessment of Power System Using Mixed Integer Linear Programming (혼합정수 선형계획법을 이용한 계통의 전압제어 및 안전도 평가)

  • 김두현;김상철
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.70-76
    • /
    • 1999
  • In this paper, a mixed-integer programming approach is presented for adjusting the voltage profiles in a power system. The advent of large-scaled system makes the reactive power and voltage problem-an attempt to achieve an overall improvement of system security, service quality and economy-more complex and seriously, Although the problem is originally a nonlinear optimization problem, it can be formulated as a mixed integer linear programming(MILP) problem without deteriorating of solution accuracy to a certain extent. The MILP code is developed by the branch and bound process search for the optimal solution. The variable for modeling transformer tap positions is handled as discrete one, and other variables continuous ones. Numerical data resulting from case study using a modified IEEE 30 bus system with outaged line show that the MILP can produce more reductions of magnitude in the operating cost. The convergence characteristics of the results are also presented and discussed.

  • PDF

Linear Programming Applications to Managerial Accounting Decision Makings (선형계획법을 이용한 관리회계적 의사결정)

  • Song, Han-Sik;Choi, Min-Cheol
    • Asia-Pacific Journal of Business
    • /
    • v.9 no.4
    • /
    • pp.99-117
    • /
    • 2018
  • This study has investigated Linear Programming (LP) applications to special decision making problems in managerial accounting with the help of spreadsheet Solver tools. It uses scenario approaches to case examples having three products and three resources in make-and-supply business operations, which is applicable to cases having more variables and constraints. Integer Programmings (IP) are applied in order to model situations when products are better valued in integer values or logical constraints are required. Three cases in one-time-only special order decisions include Goal Programming approach, Knapsack problems with 0/1 selections, and fixed-charge 0/1 integer modelling techniques for set-up operation costs. For the decisions in outsourcing problems, opportunity-costs of resources expressed by shadow-prices are considered to determine their precise contributions. It has also shown that the improvement in work-shop operation for an unprofitable product must overcome its 'reduced cost' by the sum of direct manufacturing cost savings and its shadow-price contributions. This paper has demonstrated how various real situations of special decision problem in managerial accounting can be approached without mistakes by using LP's and IP's, and how students both in accounting and management science can acquire LP skills in their education.

Developing a Large-Scale Mixed Integer Programming Program MIPBB (대형 혼합 정수계획법 프로그램 MIPBB의 개발)

  • Park, Sun-Dal;Do, Seung-Yong;Lee, Sang-Uk;Lee, Tae-Ho;Hwang, Seong-Seop
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.102-106
    • /
    • 2004
  • The purpose of this paper is to develope a large-scale mixed integer program MIPBB. In this paper, the various issues such as branching strategies, searching and bounding strategies, storing basis information, handling numerical instability, that are important for developing a large-scale mixed integer programming program, are considered. And the experimental results of MIPBB are presented and compared to those of GLPK.

  • PDF

An Optimal Solution of Machine Cell Formation Problem (기계 그룹 형성 문제의 최적해)

  • Choi Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.7-13
    • /
    • 2004
  • In this paper, machine cell formation problem is discussed. To reflect precisely actual manufacturing situations such as routing sequences, production quantities, and machining (or operation) characteristics, a new network presentation (or the problem is proposed. It is formulated as a simple 0-1 quadratic programming model with linear constraints. Then, the model is converted into a 0-1 integer programming model using a variable transformation technique. Lastly, some computational results are presented.

(An Implementation of Preprocessing for 0-1 Integer Programming) (0-1 정수계획법을 위한 사전처리의 구현)

  • 엄순근
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.133-140
    • /
    • 1999
  • Preprocessing for the -01 integer programming can reduce the size of problem instance as well as tighten its linear programming relaxations. In this research, the preprocessing techniques are classified into two categories. First, for the reduction of problem size, there are variable fixing and constraint elimination techniques. Second, for the reduction of feasible region, there are coefficient reduction and Euchidean reduction techniques. These methods are implemented and the effects are shown by experimental results.

  • PDF

An Empirical Study for Satisfiability Problems in Propositional Logic Using Set Covering Formulation (집합 피복 공식화를 이용한 명제논리의 만족도 문제에 대한 계산실험 연구)

  • Cho, geon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.87-109
    • /
    • 2002
  • A satisfiability problem in propositional logic is the problem of checking for the existence of a set of truth values of atomic prepositions that renders an input propositional formula true. This paper describes an empirical investigation of a particular integer programming approach, using the set covering model, to solve satisfiability problems. Our satisfiability engine, SETSAT, is a fully integrated, linear programming based, branch and bound method using various symbolic routines for the reduction of the logic formulas. SETSAT has been implemented in the integer programming shell MINTO which, in turn, uses the CPLEX linear programming system. The logic processing routines were written in C and integrated into the MINTO functions. The experiments were conducted on a benchmark set of satisfiability problems that were compiled at the University of Ulm in Germany. The computational results indicate that our approach is competitive with the state of the art.