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Abstract

This paper presents sufficient conditions for zero duality gap of Lagrangean relaxation in mix-
ed integer programming problems and discusses about an algorithm which updates multipliers
using the dual varibles of the linear programming constructed by fixing integer variables.

1. Introduction

The Lagrangean relaxation method [2] has been quite successful in solving mixed Integer
programming problems. The Lagrangean multipliers usually have been updated using the sub-
gradient optimization method [3].

It is known that if an optimal solution of a relaxed problem is a feasible solution of the orig-
inal problem then it is an optimal solution of the original problem and there is no duality gap
(when the relaxed constraints are equality constraints.) However it is quite hard to expect that
an optimal solution of a relaxed problem satisfies the equality constraints of the original prob-
lem.

In this paper we present a stronger result which provides a sufficient condition for zero dual-
ity gap and provides an optimal solution in this case.

2. Duality gap

Consider the following mixed integer programming problem :

(Pl) t=min axtcy

s.t. Ax+By=5, 2.1
Cx+Dy=d, 2.2)
>0, xel™,

where AeRP*™ BeRr*" CeRv™ DeRY? geR™ ceR" beR?, dER?, yeR", and
"= |xeR™ | xi areintegers} .
Let us consider the following Lagrangean relaxation of (P1):
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(P2) L(w) =min ax+ ¢y+ u(d— Cx— Dy)

s.t. Ax+ By=b,
y>0 and xe/™

Then 6=t—max L(x) >0 is the duality gap of this Lagrangean relaxation.

Define a point-to-set map R¢—I™ as follows :

a(y)= {xel™| (x, y) for some yis an optimal solution of (P2) for given #| .

Then e(x) is upper semi-continuous (For a proof see [5, pp. 402]). For a given x, consider

(P3) min ¢y
s.t. By=b—Ax,
Dy=d—Cx,
y=0.

Define a point-to-set map /™ — R* as follows :
Bx)=1{ueR® | (w, u) for some weR?” is a dual optimal solution of (P3)}.
Then B is also upper semi-continuous. Consider a composite map R¢— R*¢ as follows: $(x)
=Ba(n)).

Theorem 1. If ¢ has a fixed point «*, then there is no duality gap and (x*, »*) is an optimal
solution of (P1), where

(1) x* ea(u®),

(2) y* is an optimal solution of (P3) for given x* and

(3) there exists w* such that (w*, #*) is a dual optimal solution of (P3).

Poof. Since #* is a fixed point of ¢, there eixsts (x*, y »*, w”*) such that (x*, y) is an op-
timal solution of (P2) for given #*, and y* and (w*, u*) are, respectively, a primal optimal solu-
tion and a dual optimal solution of (P3) for given x*. Since (x*, »*) is a feasible solution of (P1),

0<0<ax* +¢y —L(u*) =ax*+cy* —(ax* +cy+ u*(d— Cx* — D))
=c(y*—y)—u"(d—CX — Dy +Dy*—Dy)
=(c—u"D) (4 —3) since (x*, y*) satisfies (2. 2)
=(c—u*D—w*B) (y* —3) since ¥* and y satisfy (2.1) for given x*
=—(¢c—u*D—w"*B)y from the complementarity of (P3)
<0 from the nonneg_ativity of (¢c—u*D—w*B) and .
Hence 6=0. Furthermore the above result shows that ax* +oy* = (u*).
Therefore (x*, ¥*) is an optimal solution of (P1).

Define a composite map /™— ™ as follows : ¢(x) = a(B(x) ).

Corollary 1, If ¢ has a fixed point x* then there is no duality gap and (x*, »*) is an optimal
solution of (P1) where " is an optimal solution of (P3) for given x*.

Proof. Let x* be a fixed point of ¢. Then there exists (w*, #*) such that (w*, #*) is a dual
optimal solution of (P3) for given x* and (x*, y) for some y is an optimal solution of (P2) for



given u*. Hence «* is a fixed point of ¢. This completes the proof.

Since @ and f are upper semi-continuous, ¢ and ¢ are also upper semi-continuous (For a proof
see [1, pp. 491]). Let S= {u | wB+uD< ¢ for some w} , the set of feasible dual variables of (P3).

Theorem 2. Suppose S and the feasible set of (P2) are bounded and #(#x) is convex for all # in
S. Then there exists a fixed point of ¢ and there is no duality gap.

Proof. For any », $(x) is a subset of S. Since S is' bounded (P3) is feasible for any x. Hence
(P1), (P2) and (P3) are feasible problems. Since (P2) has a bounded feasible set, (P1), (P2) and
(P3) have a finite optimal solution for any # in S. Therefore ¢(«) is nonempty for any #¢S. Con-
sider the point-to-set map ¢ : S— S. From the Kakutani’s fixed point theorem [4] the existence of
a fixed point is guaranteed when ¢(«) is covex for all #€S.

Among assumptions in Theorem 2, the boundedness assumption is not very restrictive in a
practical problem since we can make S bounded by introductng artificial continuousvariables
with high costs into problem (Pl) and we can make the feasible set of (P2) bounded by
introducing artificial constraints. But it is hard to expect that the convexity assumption of ¢ (u)
holds for all ». Rather we can test the existence of a fixed point using the algorithm de-
scribed in Section 3. The following corollary partially restates the well-known results for linear

programming.

Corollary 2.If x has no integerness condition and the boundedness assumptions in Theorem 2
hold then there is a fixed point of ¢ and there is no duality gap.

Proof. If x has no integerness condition then ¢(u) is convex for all «

3. Algorithm

Suppose that we have introduced artificial variables with high costs and artificial constraints
into problem (P1) so that the set S end the feasible set of (P2) are bounded. Then (x) is
nonempty for any x€I™ Since the fasible set of (P2) is bounded we can construct a bounded
subset of /™, T, such that the point-to-set map ¢ : 7— T is well defined. Consider the follow-
ing algorithm : Choose a x° in 7T and generate a sequence {x*} such that x*'1 ed(x*) for %
>0. Unlike the subgradient algorithm this algorithm updates the Lagrangean multipliers using
the dual vanables of (P3). Since T is bounded T is a finite set. Therefore the sequence will
generate a cycle. If the period of the cycle is one then there exists a k such that x*  ef(x*)
and x* is a fixed point of ¢

Suppose that the period of the cycle 7 is greater than 1. Without loss of generality, suppose
that {x% ..., x"} is a set of all different elements and x'=x"*!. Let y* be an optimal solution
of (P3) for given x* and #* be the multiplier generated from (P3) for given x* Then LB=
max L(u#*) is a lower bound.

If y* containes no artificial variables then the solution (x*, y*) is a feasible solution. If there
is no such % then wecould not find a feasible solution. Otherwise find %4 with smallest object-



ive function. Then (x*, y*) is a suboptimal solution with difference from the optimal solution

less than or equal to (ax*+cy*—LB).

4. Discussions

Suppose J! and /2 are two subsets of the set of all constraints in problem (P1). Let ¢t and
8% be the duality gaps of the Lagrangean relaxations constructed by relaxing constraints in Jt
and J?2, respectively. We can easily show that 6! = 8% if J! 22 Hence if the Lagrangean
relaxation constructed by relaxing constraints in some J! has zero duality gap then the Lagran-
gean relaxation constructed by relaxing constraints in any subset of J' also has zero duality
gap. It is an interesting question how to find a maximal set J! with zero duality gap. The
results in Section 2 may be able to provide some answers for this question. '

Suppose that our algorithm is combined with the branch-and-bound method to find an exact
optimal solution. If our algorithm is applied to the partial problem at a node of the branching
tree and finds a fixed point then it provides an exact optimal solution of the partial problem.
Then this node can be fathomed. The subgradient algorithm does not have this property. In
this sense our algorithm is expected to be more powerful than the subgradient algorithm when
they are combined with the branch-and-bound method to find an exact optimal solution of a

mixed Integer programming.
References

1. M. Avriel, Nonlinear Programming ; Analysis and Methods, Prentice-Hall, Englewood Cliffs,
New Jersey (1976).

2. A.M. Geoffrion, “Lagrangean Relaxation for Integer Programming”’, Mathematical Programmi-
ng Study, 2, 82-114, (1974).

3. M. Held, P. Wolfe and H.P. Crowder, “Validation of Subgradient Optimization”, Mathematical
Programming, 6, 62-88, (1974).

4, S.Kakutani, “A Generalization of Brouwer's Fixed Point Theorem”, Duke Mathematical
Journal, 8, 457-459, (1941).

5. W.1. Zangwill and C.B. Garcia, Pathways to Solutions, Fixed Points and Equilibria, Prentice-
Hall, Englewood Cliffs, New Jersey (1981).



