HEEEHRRL
£21% Bi%
20024 128 87

5 7‘—**

An Empirical Study for Satisfiability Problems in
Propositional Logic Using Set Covering Formulation*

Geon Cho**

i Abstract B

A satisfiability problem in propositional logic is the problem of checking for the existence of a set of truth values
of atomic propositions that renders an input propositional formufa true. This paper describes an empirical investigation
of a particular integer programming approach, using the set covering model, to solve satisfiability problems. Our
satisfiability engine, SETSAT, is a fully integrated, linear programming based, branch and bound method using various
symbolic routines for the reduction of the togic formulas. SETSAT has been implemented in the integer programming
shell MINTO which, in turn, uses the CPLEX linear programming system. The logic processing routines were written
in C and integrated into the MINTO functions. The experiments were conducted on a benchmark set of satisfiability
problems that were compiled at the University of Ulm in Germany. The computational results indicate that our approach
is competitive with the state of the art.

Keyword : Propositional Logic, Satisfiability Problem, Set Covering, Branch and Bound

=2Fea 20014 7¥ 3¢ E2AXEEY 2002H 10¥ 10¥

* This study was financially supported by Chonnam National University in 1999.

*% School of Business Administration at Chonnam National University, Standing Researcher of Management
Research Institute

1. Introduction

Satisfiability problems in propositional logic
are well-known as the first NP-complete pro~
blems. They have been solved by a number of
methods over the years. One of the best known
complete methods is Robinson’s resolution algo-
rithm, which is designed for first-order pred-
icate logic. Resolution applied to propositional
logic is called ground resolution and is essen-
tially a portion of the Quine-McClusky algo-
rithm [10]. The difficulty with resolution—based
methods is that their running time tends to
explode with problem size. The Quine-Mc-
Clusky algorithm and subsequently the resol-
ution algorithm were recently shown to have
exponential complexity [10]. Another symbolic
approach to solving satisfiability has been the
search method of Davis-Putnam-Loveland (DPL)
which is a more practical method than resolution
but also exponential in the worst-case [5].

Recently, more effective methods for solving
satisfiability problems have been developed.
These methods are based on the fact that the
satisfiability problem can be written as an inte-
ger program that can be solved with methods
that exploit its structure. The two best-known
methods for solving integer programs, branch
and bound and cutting plane methods, have been
applied to the integer program underlying a
satisfiability problem. The branch and bound
technique was used by Blair, Jeroslow and Lowe
[4], who pioneered the mathematical program-
ming approach to inference in propositional log-
ic. They showed that a straightforward branch
and bound algorithm can solve a large class of
random problems by enumerating only a few

nodes in the search tree[12]. The branch and

bound method is similar to the DPL method

except that one solves a linear programming re-

laxation of the problem at each node of the
search tree, rather than applying unit resolution.

Hooker[9] showed that input resolvents and
rank-one cutting plane techniques can solve a
class of random satisfiability problems more
rapidly than the well-known resolution method
of theorem proving in propositional logic.
Hooker and Fedjki[12] combined the branch and
bound and cutting plane approaches to obtain a
branch and cut algorithm and found that the
branch and cut methods required substantially
less time on random problems than branch and
bound when the latter must enumerate a rela-
tively large number of nodes.

Despite this success, resolvents are rather
“weak” cuts in the sense that many of these
resolvents are redundant and ineffective. In fact,
the use of cutting planes that are “deep” or facet-
inducing may reduce the size of the enumeration
trees remarkably. We need to have an under-
standing of the facial description of the sat-
isfiability-polytope. But no useful results of this
sort have been obtained for the satisfiability-
polytope partly because the dimension of the
face of this polytope is not well defined {1].

Araque and Chandru [1] formulated the sat-
isfiability problem as a set covering problem, a
type of integer program for which many theories
have already been developed. In that formulation
they use as many decision variables as there are
literals in the proposition (twice the number of
atomic propositions). Further, the set covering
formulation has a full-dimensional convex hull
and this gives a technical handle for exploring

the polyhedral combinatorics of satisfiability [1].

xlz‘g- 31_5!_' lz\lﬂé

In this paper we implement a branch-and-
bound algorithm with the Jeroslow-Wang
branching rule [13] based on the set covering
formulation. We utilize an integer programming
shell, MINTO(Mixed INTeger Optimizer) writ-
ten in C language. MINTO is a software system
that solves mixed-integer linear programs by a
branch and bound algorithm with linear pro-
gramming relaxations [16]. MINTO is imple-
mented on top of the CPLEX callable library,
version 1.2, We find that SETSAT’s results in
the number of nodes are more efficient than
MINTO’s defaults. For most problems, SETSAT
results in search trees with fewer nodes than
DPL(J/W) as implemented by Hooker.

In the next section, we begin with a brief re-
view of some of the basic notions of proposi-
tional logic. We also introduce the Davis-
Putnam-Loveland (DPL) algorithm and discuss
the branch and bound method for the satis-
fiability problem. We then introduce the set cov-
ering formulation of the satisfiability problem.
In section 3, we describe our theorem prover
(called SETSAT) and present the results of our
experiments. Section 4 contains a summary of
our conclusions and a list of topics for future

research.

2. Preliminaries

We begin with a brief review of some of the
basic notions of propositional logic and go on
to discuss Resolution and DPL, the two classical
symbolic methods for theorem proving. In the
second subsection we will review the quanti-
tative or numerical approach based on integer
programming formulations. The last subsection

will deal with the set covering formulation.

o] 8-3 WA =e)e] wEy

g 7

2.1 Symbolic Methods for Satisfiability
Problem

Symbolic logic has been studied from both
philosophical and mathematical perspectives.
J.A. Robinson developed a single inference rule,
the resolution principle, which was shown to be
complete and easily implemented on computers.
Since then, many improvements of the resolu-~
tion principle have been made. In this subsec-
tion, we are interested in the applications of
symbolic logic to solving large-scale inference
in propositional logic.

A proposition is a declarative sentence that
is either true or false, but not both. The “true”
or “false” assigned to a proposition is called the
truth value of the proposition. In propositional
logic, it is customary to use five logical connec-

tives ;

7 (not), A(and), V(or), — (if - then),

and < (if and only if).

These five logical connectives can be used to
build compound propositions from simple(atom-
ic) propositions. For instance, suppose that we
represent “x is larger than y” by P, “yis
larger than 2" by @, and “ x is larger than 2"
by R. Then the sentence “if x is larger than y
and y is larger than z, then x is larger than z”
may be represented by ((PA Q) — R). A lit-
eral is an atomic proposition x; or its negation

“x;. A clause, such as x;V T x3Vxg, is a
disjunction (or) of zero or more literals. A clause
with no literals is the empty clause, which is
always interpreted as taking the value false. A
truth assignment is an assignment of truth

values to every variable. A proposition P is a

90

50

conjunctive normal form {cnf.) if it is a con-
junction P= Py A Py/\ - NP, of proposi-
tions P; (1 < i< m), each of which is a (dis-
junctive) clause.

A set S of clauses is satisfiable (or consis-
tent) if there exists a truth assignment which
makes every clause in S true. A set S of clauses
is unsatisfiable (or inconsistent) if it is false
under all its truth assignments. It is not difficult
to see that the satisfiability question is central
to inference in propositional logic. It is also well
known that any proposition can be reduced to
an equivalent cnf. formula by using the De
Morgan's Laws along with the distributive laws
for disjunction and conjunction. We will there-
fore use the satisfiability problem of a formula
in c.n.f. as being synonymous with “theorem
proving” in this paper.

S logically implies a clause C if every truth
assignment that makes all the clauses in S true
also makes Ctrue. A clause C absorbs (or dom-
inates) a clause D if every literal of C occurs
in D. It is not difficult to see that a clause C
logically implies a clause D if and only if C ab-
sorbs D. Note that a set of clauses that implies
the empty clause is unsatisfiable. When two
clauses C and D are such that exactly one

variable x; occurs negated in one clause and

posited in the other, their resolvent is the clause

containing all the literals in C and D except x;

and 7 x,. For instance, the resolvent of (1) and

(2) below is (3).

xl\/X2\/—'x3 (1)
TV, Vx4 2
xg\/"‘x;;\/x4 (3)

The resolvent is implied by the conjunction
of its two parents but by neither individually.
In fact, resolution is reasoning by cases. In the

above example, if x, is false, then x; or 7 x3
must be true by (1), whereas if x, is true, then
x50r x4is true by (2);it follows that x,,
T x3, or x,must be true.

A resolution proof of a clause C from a set
of premises is a finite sequence of clauses be-
ginning with the premises and ending with a
clause that absorbs C, such that every clause
is the resolvent of two earlier clauses in the
sequence. A refutation of a set of premises is
a proof of the empty clause from these premises.
W.V. Quine showed that resolution is a complete
inference method for propositional logic, in the
following sense ; if a given set S of clauses is
unsatisfiable, then resolution will generate the
empty clause ; if it is satisfiable, any conclusion
that follows from S is absorbed by one of the
clauses obtained in the resolution process. Reso-
lution is therefore a complete refutation method,
since there is a refutation for any unsatisfiable
set of premises.

A prime implication of a set of clause S is
a clause if it is not absorbed by any clause that
is an implication of S. In fact, when S is sat-
isfiable, the clauses that remain when the pro-
cedure terminates are the prime implications of
S. Note that prime implications of S are in a
sense the strongest possible implications of S,
and every implication of S is absorbed by at
least one prime implication. There is a simple
finite procedure for generating all prime impli-
cations of a given set of clauses. If there is ex-

actly one literal x; that occurs negated in clause

C and posited in clause D, then C and D are

A 918 FA3E 0] 43 WA SR Ao AT ALY AT 9
R R e e

the parents of a resolvent (on x ;). By repeatedly
applying this resolution step and throwing away
absorbed clauses we can eventually find all
prime implications of a set of clauses. Unfortu-
nately the number of prime implications grows
exponentially with the number of variables in
the worst case.

A unit resolution is a resolution in which a
resolvent is obtained by using at least one unit
parent clause. A unit proof is a proof that con-
sists entirely of unit resolutions. For instance,

there is a unit proof of x; from the premises

marked (P).

A unit refutation is a unit proof that is a ref-
utation. Unit resolution is complete for the satis-
fiability problem on Horn Formulas[5].

As for general satisfiability problems, some
subclasses of them seem clearly hard. There
seems to be no algorithm, for instance, that can
easily solve the famous pigeon-hole problems
(one of the results of our computational exper-
iments notes a welcome exception to this state-
ment). The pigeon hole problem is to place #
pigeons in # — 1 holes so that no hole contains
more than one pigeon. For instance, the pigeon

hole problem for =3 is,

X1 \% X12
X21 V xp
X3 V xp

TxuV T xg

X1 \/_1x31 4
TxaV Txgy
TxpV iy
-

X1 V T xy

TxpV Ty

Here x;;is true when pigeon ¢ placed in hole

j. Thus the first three clauses in (4) assert that
each pigeon is placed in a hole. The remaining
clauses assert, for pair of pigeons, that both do
not occupy the same hole. In general, the pigeon

hole problem for # is,

n—1
\/lx,;, for all ie{1,2,, n}
i~

‘xikV'x,k, for all k= {1,2,"',%_1},

Lje{l,2,,n}, i+

In spite of pathologically hard problems like
the pigeon hole problems, computational expe-
rience over the last few years indicates that a
wide variety of satisfiability problems can be
practically solved in large instances. There are
several methods that have successfully solved
satisfiability problems. They include tree search
methods and cutting plane methods related to
the resolution method of theorem proving. In
this paper we will be mostly concerned with tree
search methods.

The Davis-Putnam-Loveland (DPL) proce-
dure is a classic inference method well-known
to computer science and artificial intelligence.
DPL is very closely related to the branch and
bound method for satisfiability problem. The
DPL procedure generates a binary search tree
in order to find a satisfying solution for a set
of clauses. Some terminology is helpful here.

A binary tree consists of a set of nodes, each

of which has at most two other nodes as imme-

diate successors. Every node except the root
node is the immediate successor of exactly one
node, called its immediate predecessor. Node A
is a predecessor of node B, and B a successor
of A,if A is the first and B the last in a series
of nodes, each of which is the immediate prede-
cessor of the next. To generate the DPL search
tree, we associate the original problem with root
node of the tree and apply unit resolution pro-
cedure to simplify the problem. If we don'’t prove
unsatisfiability, we set a chosen variable to true
and to false, generating two immediate succes-
sors.

DPL optionally uses monotone variable fixing,
which simply looks for a monotone variable (a
variable that appears only posited or only ne-
gated) and assumes that the variable is false if
the variable is negated and the variable is true
if the variable is posited. In either case we re-
move all clauses containing the variable. Clearly
this does not affect the satisfiability of the o-
riginal problem.

The performance of DPL can be improved by
using an efficient branching rule. One heuristic
for choosing on which variable to branch is that
proposed by Jeroslow and Wang (we will call
it the Jeroslow-Wang branching rule). The
Jeroslow-Wang branching rule says roughly
that one should branch on a variable that occurs
in a large number of short clauses. If v repre-
sents a truth value (0 or 1), define the function

w(S ,jv) = kZlN,-k,,Z‘k

where N, is the nAumber of k-literal clauses

in S in which x; occurs positively (if v=1)

or negatively(if v=10).If (", v") maximizes
w(S ', j, v), then we branch on x}, taking the
S U {x}) branch first if »* =1, and other-
wise taking the S U { " x}} branch first.
Jeroslow and Wang [13] found that the speed

of the branch and bound procedure can appa-
rently be increased on random satisfiability pro-
blems by branching using the rule above and
by replacing the LP step with unit resolution.
Their approach differs from DPL only on the
choice of which node to expand next (DPL is
generally depth-first). In fact, it turns out that
the two methods generate search trees of iden-
tical size when the problem is unsatisfiable.
However, the Jeroslow-Wang method may find
a solution sooner than DPL if the problem is
satisfiable. We now introduce branch and bound
method for integer programming and discuss
the solution of satisfiability problem and branch
and bound technique.

2.2 Traditional Integer Programming
Approaches for Satisfiability Problem

Satisfiability problems have been traditionally
solved by the nonnumeric methods discussed
above. But recently several researchers have
noted that mathematical programming methods
provide more efficient approaches for solving
hard inference problems. These methods are
based on the fact that satisfiability problem can
be written as an integer program that can be
solved with methods that exploit its structure.

The two best-known methods for solving
integer programs, branch and bound and cutting
plane methods, have been applied to inference
in propositional logic. The branch and bound
technique was used by Blair, Jeroslow and Lowe

Z]t‘g- _\7]_51_ _T_'./Jil.ﬁ_

(4], who pioneered the mathematical program-

ming approach to inference in propositional log -
ic. Their motivating idea is that by solving the
linear programming (LP) relaxation of the prob -
lem at each node of the branch and bound tree,

they may find an “incumbent” integer solution

early in the process and thereby solve the prob-

lem quickly. The branch and bound approach
creates a binary search tree in a way very sim-
ilar to the DPL algorithm. But rather than using
unit resolution at each node, it solves the linear
relaxation of the problem. We now introduce
how to formulate inference problems in proposi-
tional logic as integer programs and discuss
how the integer programs are solved.

Any clause can be written as a linear inequal-

ity in binary variables. For instance, x; \V

T x5V x5 can be written,
x1+t(1—=x3)+2x321 or x; —x9+x320

where each x ;€ {0, 1}. We interpret x;=1 to
mean x; is true, and x ;= 0 to mean is false,
Let a set S of m clauses in # variables he
written as an m X n system Ax > g of linear
inequalities. Clearly, S is satisfiable if and only

if the minimum value of the objective function

is zero in the following integer programming for -

mulation.
min x,
s.t. xpet+ Ax>a (b)

X; € {0,1}, j=].,2,“‘,7[

where e is a column vector of ones.
Ordinarily a branch and bound algorithm
bounds as well as branches. That is, each time

we obtain an incumbent solution we get a new

o83 el HEE FAo AT ALY AP %

upper bound on the minimum value of the ob-
jective function value. So, if at some node the
LP relaxation yields an objective function value
that is greater than or equal to the best upper
bound obtained so far, then we can fathom that
node, since the objective function value at any
successor of that node cannot be better. The
search continues until we have branched at or
fathomed every node in the current search tree,
and the best incumbent solutions solve the
original integer program. However, this sort of
bounding serves no purpose in a satisfiability
problem. Even if we find an integer solution
with objective function value 1, this is a useless
bound, because the LP relaxation cannot have
a greater solution value than I.

As we mentioned earlier, the branch and
bound method for satisfiability problem is quite
similar to DPL in the sense that solving the LP
relaxation at a node is equivalent to applying
unit resolution, since the LP relaxation and unit
resolution detect unsatisfiability in the same
instances. In fact, x, is strictly positive in the
LP relaxation of (5) if and only if unit resolution
detects unsatisfiability.

It is advantageous to apply unit resolution
before solving the LP relaxation. If a contradic-
tion 1s detected, we can backtrack without solv-
ing the relaxation. Otherwise we obtain a sim-
plified problem, and we solve its LP relaxation
in hope of obtaining an integer solution with
xg = 0. The advantage of this approach is not
only that we solve fewer LP problems, but also
that the problems become smaller as we move
deeper into the search tree. The disadvantage
is that we must solve each LP relaxation from
scratch.

It may happen that once unit resolution has

94

been performed without finding a contradiction,
the LP relaxation does not necessarily give any
information about the satisfiability of the prob-
lem. In fact, if every clause has at least two

literals other than x,, then it can always be
solved by setting x4 = 0 and every other x,;=

1/2, even if the problem is unsatisfiable. But
even though this solution provides no informa-
tion, it does not mean that there is no point in
solving the linear relaxation. For linear program-—
ming algorithms typically find extreme point

solutions, and the solution with all x;=1/2 is

seldom an extreme point solution. An extreme
point solution can be quite useful, because it

may be an integral solution with x, = 0.

2.3 Set Covering Formulation of Satisfiability
Problem

We just saw that checking satisfiability in
propositional logic can be stated as checking
feasibility of an integer linear program. Pol-
yvhedral combinatorics, a central theme in inte-
ger programming, is concerned with the struc-
ture of the convex hull of incidence vectors that
represent feasible solutions to an integer linear
program. Previous attempts at the polyhedral
combinatorics of the “satisfiability polytope” have
run into the difficulty that the dimension of this
polytope is not well defined (The convex hull
of incidence vectors of truth assignments is
called the satisfiability polytope). Araque and
Chandru [1] constructed a set covering formula-
tion of satisfiability problem such that the sat-
isfiability polytope is the projection of a face
(possibly empty) of the dominant of the set
covering polytope.

The set covering problem can be stated as

B
29

(SC) min{cx | Ax = 1,x= {0,1}"},

where A= (a;) is an m X » matrix with
a; € {0,1}), forall 4,7 and 1isthe m-vector

of 's.f Ax = 1 is replaced by Ax = 1, the
problem is called set partitioning. If we reverse
the inequality in the definition of (SC), we
obtain the set packing problem

(SP) max{cx|Ax < 1,x={0,1}"}.

Quite surprisingly, unlike the closely related
set packing problem, the study of the facial
structure of the set covering polytope Q(A),
i.e, the linear description of the convex hull of
the feasible solutions of (SC), has received
very little attention in the literature {11]. Re-
cently, motivated by the successful applications
of the polyhedral approach to some, NP-hard,
combinatorial problems, several authors [2, 3, 6,
7, 14] addressed the problem of providing a par-
tial linear description of the polytope Q (A).

Now we introduce the set covering formula-
tion of satisfiability problem as presented in
Araque and Chandru [1]. In this formulation we
use as many deciston variables as there are
literals in the proposition (twice the number of
atomic propositions). These additional freedom
permits at least two advantages. We are able
to formulate satisfiablity problem as a set cov-
ering problem, a type of integer program for
which specialized theory has already been de-
veloped. Further, the set covering formulation
has a full-dimensional convex hull and this
gives us a technical handle for exploring the
polyhedral combinatorics of satisfiability prob-
lem.

Given a set of clauses C= {C,,-*,C,,} on

AY 25 FAE o) 43 HAlxeld] DS EA I ALY AT 95

the atomic propositions {x;,-,x ,}, the sat-
isfiability problem is to determine if there exists
a set of truth assignments (a model) that sat-
isfies all clauses in C. We define a set of 22
variables {y,,2,,",¥, 2,} which have the
interpretation
;= {1 if x; is true
otherwise

z‘=[l if x; is false
7
0 otherwise

Hence there is an 1-1 correspondence be-

tween a set of truth assignments for {x,, -,
% ,} and non-negative integer y, z meeting

the condition
v;+z;,=1 for j=1,2,-,n (6)

Given a clause C;of C thatis not a tautology,

i.e. is nonempty and does not contain a literal
and its negation, we can write down a clausal

inequality
(a’,b") (y,2) =1, where

azj:{l if x; is in C;

0 otherwise

b;:{l if _1.96]‘ is in C;
0 otherwise

Satisfiability of C can be resolved by solving
the following integer programming problem
(IP).

n
min Zl(yj+zj)
=

(IP) s.t. (a',6)(y,2)=1 for C;eC
yitz;=21 for j=1,2,,n
(,2) e {0,1}*”

Clearly C is satisfiable if and only if the op-
timal objective value of (IP)is n.Let F(y,z)
denote the set of feasible solutions to (JP) and

let @c= conv{F (y,z)} be the convex hull of
F(y,z). Then Q. is nonempty even if C is

unsatisfiable since the vector of 1's (1,1) is
always in F(y,z). The main result proved in
[1] is that prime implications of C define facets
of Q. This result on the set covering polytope

related to satisfiability problems illustrate another
nice connection between logic and the geometry
of optimization : prime implications which are
the “strongest implications” give rise to facets
which are the “strongest inequalities”.

These results when combined with the body
of knowledge on facets of general set covering
polytopes [2, 3,7, 15, 17] gives us some hope that
effective cutting plane methods for satisfiability
are possible. It was with this motivation that we
set about building a satisfiability checker based
on set covering. This paper reports on the first
phase of this project in which we have imple-
mented SETSAT, a theorem prover for proposi-
tional logic using linear programming and sym-
bolic techniques on this set covering formula-
tion., The details of this implementation as well
as the results of our empirical study are the top-

ics of the next section.

3. Experiments with the Set
Covering Formulation

3.1 The Inference Engine

In this section we describe the design of our
“satisfiability engine” SETSAT. SETSAT is

96

written in C, for compatibility with the integer
programming shell, MINTO(Mixed INTeger Op-
timizer) developed by Savelsbergh, Sigismondi
and Nemhauser in Georgia Institute of Tech-
nology and also written in C. MINTO is a soft-
ware system that solves mixed-integer linear
programs by a branch and bound algorithm with
linear programming relaxations. MINTO works
with a minimization problem. However, if the
original formulation describes a maximization
problem, MINTO will change the signs of all the
objective function coefficients by utilizing a
command line option. MINTO is implemented on
top of the CPLEX callable library, version 1.2.
MINTO requires the mixed integer program-
ming formulation to be specified in a MPS for-
mat file.

To be as effective and efficient as possible
when used as a general purpose mixed integer
optimizer, MINTO attempts to improve the for-
mulation by preprocessing, construct feasible
solutions, generate strong valid inequalities, per-
form variable fixing based on reduced prices,
and control the size of the linear programs by
managing active constraints. A set of applica-
tion functions has to be compiled and linked with
the MINTO library in order to produce an ex-
ecutable version of MINTO. These functions
give the application program the opportunity to
incorporate problem specific knowledge and
thereby increase the overall performance [16].

We have used MINTO in order to implement
SETSAT, a branch and bound algorithm with
Jeroslow-Wang’s branching rule applied to the
set covering formulation of the satisfiability
problem. SETSAT was created by including
four subroutines as application programs in
MINTO. These were needed to exploit the pos-

sibility of problem reductions based on logic

processing. The four subroutines correspond to

e BIPARTITE : convert c.n.f. formula to set
covering

e UNITRES : unit resolution

o DOMINATION : domination (absorption)

¢ MVF : monotone variable fixing

3.1.1 Subroutine BIPARTITE

In this subroutine we translate satisfiability
of a propositional formula in c.n.f. to a set cov-
ering problem represented by a bipartite graph
structure. Every clausal inequality has its own
structure called CONSTRAINT which store in-
formation about the clause, such as the number
of variables and the indices of the variables
(positive for y-variables, negative for z-vari-
ables). The CONSTRAINT's are maintained in
doubly-linked lists. Each variable in each struc-
ture CONSTRAINT has also its own structure
VARIABLE which is a singly-linked list. Every
variable also has its own structure called
MONOVAR which stores pointers which point
to clauses containing the variable. Every pointer
in the structure MONOVAR has also its own
structure CLAUSE which is a singly-linked list.

For example, consider the following set of

clauses.
(cn 0V T x Vo ox3V T oxy
(C3) VT x3 Vo oxy
(C3) ™ miV %, V7 (M
(C4) ox AV x3\/_‘ X4
(Cs) X

The set covering formulation of the above

problem (7) is

4
min z:l(y,--f—z,»)
i=

s.t. y1+zytys+z421
Yetzztuys=1
2ty tz321
zZ1tz3t+z,21 (8)
yi=21
vitz;z1 for j=1,2,3,4
v; z2;€{0,1} for j=1,2,3.4

Then we translate this formula into a bipartite
graph structure as shown in [Figure 1]. Each
C;’s, v;’s and z;’s have their own struc-
tures. For example, C; and v, have the follow-
ing structures as shown in [Figure 2] and [Fig-

ure 3], respectively.

[Figure 1] Original Bipartite Graph Structure

CONSTRAINT
*prev

1 VARIABLE

¢ 4
AERPENPE
*var / /

*next *next *next *next

*next

[Figure 2] Structure CONSTRAINT and VARIABLE

Here,

* prev = a pointer which points to the previous
structure CONSTRAINT in the dou-
bly linked list

* var = a pointer which points to the structure

VARIABLE

ql.

S Al g ALY A 97

* next = a pointer which points to the next
structure CONSTRAINT in the dou-
bly linked list or to the next structure
VARIABLE in the singly linked list

MONOVAR CLAUSE

5

2 1
yl ‘\ K
*Cl *next =next

[Figure 3] Structure MONOVAR and CLAUSE

Here,
* ¢l = a pointer which points to the structure
CLAUSE
xnext = a pointer which points to the next
structure CLAUSE in the singly link-
ed list

3.1.2 Subroutine UNITRES

This subroutine implements the unit resolu-
tion method on the BIPARTITE representation.
We search the list of CONSTRAINTS for a unit
clause. As long as there is a unit clause, we
assign the corresponding variable the truth val-
ue needed to make this clause true and delete
all clauses containing the variable and also de-
lete the opposite variable from all clauses. If we
create a new unit clause, then we add the unit
clause at the tail so that we can do unit resolu-
tion for the new atomic variable later. If two unit
clauses are opposite, then the set of clauses is
unsatisfiable. If no clauses remain except unit
clauses, a satisfying truth assignment has been
found. For example, consider the set of clauses

(7). Since there is a unit clause Cj containing
an atomic variable y,, we delete clauses C;
containing y;. We need to update the structure
MONOVAR before we delete C, because if we
delete C, then it will not be in the MONOVAR

98

by

ok

any more. Now we delete z; from Cj3 and Cy.

Thus we have the following set of clauses (9).

(C3) PTAVARD TAVERS'

(C3) x3V T xg3 (9)
(Cy Tx3V Txy

(Cs) Xy

The set covering formulation of (9) is

4
min Zl(yﬂ“ z;)
=

s.t. yotzz3tys=21
yat gzl (10)
23t z,21
yi=1
v;i+z;21 for j=1,2,3,4
v; z;€1{0,1} for j=1,2,3,4

And the corresponding bipartite graph struc-

ture is shown in [Figure 4].

[Figure 4] Bipartite Graph Structure after UNITRES

3.1.3 Subroutine DOMINATION

This subroutine checks for dominated (ab-
sorbed) clauses and deletes them. We first check
the number of clauses containing a variable, say
y;. If the number is greater than one, then we
check the number of variables contained in each
clause containing y;. If a clause C; (containing

v;) has more variables than a clause C, {con-

taining y,), then we check if C; contains all

variables in C,. If it does, then C;is dominated
by C,, so we delete C;. Before we delete C;,
we need to update the structure MONOVAR. In

the above example, since C, is dominated by
C;, we delete C, after we delete C, from the
structure MONOVAR. Therefore the resulting

set of clauses is

(Cg) xz\/_‘x3
(C4) _‘X3\/_1x4 (11)
(Cs) X1

And the set covering formulation of (11) is

4
min }Zl(yi+z,~)
s.it. ypt+z321
z3tz,=21 (12)
yi=1
yvi+z;=1 for 7=1,2,3,4
v; 2;,€{0,1} for j=1,2,3,4

The corresponding bipartite graph structure is

shown in [Figure 5].

[Figure 5] Bipartite Graph Structure after
DOMINATION

3.1.4 Subroutine MVF
This subroutine implements monotone var-
iable fixing, which the reader may recall is the

idea of fixing an atomic proposition to true

A 9% FYHE o183 B WIS FA) e ANAY BT %

(false) if it only appears as a positive (negative)
literal in all clauses. We check the structure
MONOVAR to see if there is a monotone var-
iable. We first make a list of monotone variables
so that we can apply MVF to new monotone
variables efficiently. Whenever we detect a mon-
otone variable we add it to the list. We use an
array for the list of monotone variables. Now
if v, 1is an monotone variable, then after updat-
ing the structure MONOVAR, we delete every
clause containing y; by setting v; to true and
add a unit clause with an atomic variable y; at
the tail of the linked list of CONSTRAINT so
that we can keep track of the variable fixed by
true. If no clauses remain except those monotone
variables, a satisfying truth assignment has
been found. With the continuation of the above
example, since y,, z3,and z4 are monotone var-
iables, we delete C; and C, after updating
MONOVAR and add one of these monotone var-
iables (we use z3) to the tail of the linked list
of CONSTRAINT. Therefore the resulting set

of clauses is

(Cs) x;
(CG) ﬁX3

And the set covering formulation of this is as

follows.

4
min Zl(y,-+z,-)
~
s.t. ¥y =1
2321
yitz;21 for j=1,2,3,4
v, z2;©{0,1} for j=1,2,3,4

The corresponding bipartite graph structure is
shown in [Figure 6).

24
[Figure 6] Bipartite Graph Structure after MVP

Notice that we have solved example (7) by
just applying these logic processing subroutines.
In fact, if we set x, to true and x5 to false,
the problem is satisfiable. This is equivalent to
the fact that the set covering formulation of (7)
has an integer solution (¥, ¥3, ¥3, ¥4, 21, 22,
z3,24) = (1,1,0,1,0,0,1,0) with optimum
objective value 4 (note that there are several
integer solutions with objective value 4).

Now we observe that there is a natural order

for these subroutines to he invoked.
UNITRES = DOMINATION = MVF

® Remark (i) : Monotone variable fixing (MVF)
does not enable unit resolution (UNITRES).
Suppose y;is a monotone variable. Then we
delete every clause containing y; and add a
unit clause y; at the tail of the structure
CONSTRAINT by MVF. Therefore, we can
only create some unit clauses containing mon-
otone variables Thus, UNITRES is not ena-
bled by MVF.

® Remark (ii) : Domination (DOMINATION)
does not enable unit resolution (UNITRES).
Suppose a clause C;is dominated by a clause

C;. Then C; is deleted by DOMINATION.

100

P
A

Since we delete a clause, not a variable, the
result of DOMINATION can not create unit
clauses. Therefore DOMINATION does not
enable a new unit clause.

Remark (iii) : Monotone variable fixing
(MVF) does not enable domination (DOM-
INATION). Suppose y; is a monotone vari-

able. Then we delete every clause containing
v; and add a unit clause y; at the tail of the
structure CONSTRAINT by MVF. Since no
clauses are dominated by any added unit
clauses after MVF, DOMINATION is not
enabled by MVF.

Remark (iv) : UNITRES may enable MVF.

For example, consider the following set of

clauses.
(Cl) x1V XZ\/ X3
(Cz) _‘xl\/_‘xz \/ X4
(Cs) Txy VT ay
(Cy) S

If we apply UNITRES, then we have

(Cz) —|x2 V X4
(Cg) _|JC3 \/_'X4
(C4) X1

Note that " x; and ' x5 are new monotone

variables. Therefore, MVF is now applicable,
which means UNITRES has enabled MVF.

® Remark (v) : UNITRES may enable DOMI-
NATION. For example, consider the follow-

ing set of clauses :

(Cl) _‘xl\/xz\/xg
(CZ) xg\/x3Vx4
(Ca) X

After we apply UNITRES, we have the follow—

ing set of clauses.

(Cl) x2Vx3
(Cy) 22V x5V x4
(C3) X1

Note that the clause C, is dominated by the

clause C;. Therefore, UNITRES has enabled
MVF.

® Remark (vi) : DOMINATION may enable
MVF. For example, consider the following

set of clauses.

(Cp) Vo x

(C) 7x1V o x Vo ox3

(Cg) _‘xl\/ﬁxg \/‘—‘x;;\/_‘)m
(cy) x4 V T x3Vooxy

Since the clause C, is dominated by the clause
C,, we can apply DOMINATION. The result-

ing set of clauses is as follows.

(Cl) x1V Xy
(Cs) _‘xl\/_‘xz\/_'x3\/_‘x4
(C4) X1 \/ﬁx3\/ X4

Note that ™ x5 has became a monotone var-

iable after DOMINATION. Therefore, MVF is
now enabled.
The above remarks imply that the most effi-

clent order of processing is
UNITRES = DOMINATION = MVF

We now attempt a brief description of the
SETSAT control structure. First, try to simplify
the original problem by calling UNITRES,
DOMINATION, and MVF in that order and then
create a MPS format file for MINTO to begin
at the root node of the search tree. Solve the
LP relaxation of the set covering formulation at

AT 314 BAsE o4 Al YFE FAG A ALLY AT 100

current node inside MINTO. If the optimum
objective value is equal to half of the number
of variables in the formRulation with 0-1 integer
solution, stop. A set S of clauses is satisfiable.
If the optimum objective value is strictly greater
than half of the number of variables in the
formulation, fathom the node. If the optimum
objective value is equal to half of the number
of variables in the formulation with fractional
solutions, then call a function ‘a_bnds.c’ which
contains subroutines BIPARTITE, UNITRES,
and MVF (MINTO keeps track of fixed vari-
ables from a_bnds.c). Now call a function ‘a_
divide.c’ which contains Jeroslow-Wang branch-
ing rule and returns a branching variable, and
then branch on the variable. Continue until
either satisfiability or unsatisfiability is estab-
lished or the enumeration limit MAXNODES is

reached.

3.2 Computational Results

As was mentioned earlier, our empirical test-
ing of SETSAT has been conducted on a set
of benchmark satisfiability problems that was
compiled at the University of Ulm in Germany.
In 1991, Harche, Hooker and Thompson [8] re-
ported a careful comparative study of the per-
formance of a variety of algorithms on this test
set. Their implementations are in FORTRAN
and the CPU times reported are for a SUN Sparc
Station 330. The LP solver used in their study
was the XMP system.

The following tables report the results of our
experiments on a part of the Ulm test set. We
have run SETSAT and MINTO in two default
versions by utilizing the set covering formula-
tion of each problem in the test set. MINTO A
utilizes all the default cutting plane techniques

built into MINTO which may generate clique
inequalities, knapsack covers, and flow covers
and thus may be regarded as a general purpose
branch and cut system for mixed integer pro-
gramming. In MINTO B we turned off the cut
generators and hence MINTO B may be regar-
ded as a general purpose LP-based branch and
bound solver.

SETSAT is a branch and bound algorithm
and no cutting plane techniques built in MINTO
are utilized. We use the following fathoming rule
for both SETSAT and MINTO ; if LP solution
is greater than half of the number of variables
in the set covering formulation, then we fathom
the node. Otherwise, we continue. SETSAT C
utilizes the Jeroslow-Wang branching rule with-
out a tie-breaking rule(we branch on a z-
variable with the largest index whenever we
have a tie on weight). SETSAT D utilizes the
same branching rule with the following tie-
breaking rule : whenever we have a tie on
weight, we branch on a variable that appears
in the clauses with average shortest length. If
a tie occurs here, then we branch on the variable
that appears in more clauses.

Our implementations ran on a SUN Sparc
Station IPC. For purposes of comparison we
have also listed the performance of DPL (with
the Jeroslow-Wang branching rule) and Branch
and Cut on the benchmark problems as reported
in [8]. Hooker and Fedjki [12] developed B &
CUT method appeared in the following tables
by utilizing the integer programming formula-
tion (5). They not only used the heuristic of
Jeroslow-Wang branching rule which selects a
branching variable only from variables with a
fractional value in the LP relaxation, but also

used the so-called rank one cut, a cut which is

a positive linear combination of inequalities in
the system and rounding up any nonintegers
that result (for more details, refer to Harche,
Hooker and Thompson [9]).

As we can see from the tables there is no
absolute domination by any of the methods.

However, some notable trends in the results are :

(i) MINTO default, version B appears to be the
weakest method. This is not surprising since
it 1s a general purpose LP-based branch and
bound method. It does not take any advan-
tage of the special structure in the set cover—
ing formulation.

(ii) MINTO default, version A appears to be
only slightly better than version B. A nota-
ble exception is the amazing performance of
version A on Pigeon Hole Problems. It solv-
ed every Pigeon Hole Problem in one node,
1.e.,, with no branching.

(iii) SETSAT D seems to be improved version
of SETSAT C. SETSAT also seems to be
slightly better than DPL in the size of the
enumeration trees it generates. However,
SETSAT does a lot more work at each
node (solving an LP) and so the smaller
enumeration is to be expected.

(iv) SETSAT, on the other hand, generates a
slightly larger enumeration tree than Branch
and Cut on most problems. This is also to
be expected since Branch and Cut uses the
power of input resolution in tightening the
LP relaxation while SETSAT, in its cur-
rent version, uses only unit resolution.

(v) An important observation is that the CPU
times for SETSAT and MINTO seem not
to be competitive in relation to Hooker's
implementations of DPL and Branch and
Cut. Part of this is perhaps due to the speed

Py
o

of XMP written in FORTRAN over CPLEX
on these problems. It should be noted
however that considerable speed up in
CPLEX may be possible by changing pivot
options to deal with the degeneracy in the
set covering linear relaxations. Also, since
the number of constraints are typically larg-
er than the number of variables, it is per—
haps advantageous to solve the dual of the
linear relaxations. These improvements a—
long with several others may guarantee the
improvement of CPU times for SETSAT
and MINTO and therefore are proposed as

future research issues.

4. Conclusion

4.1 Summary

We implemented a branch and bound algo-
rithm with the Jeroslow-Wang branching rule
based on the set covering formulation. Because
of the standardized test problems, we could com-
pare the performance of SETSAT not only with
MINTO defaults but also with DPL and Cutting
Plane methods as reported by Harche, Hooker
and Thompson in [8]. We found that SETSAT re-
sults in a smaller number of nodes than MINTO’s
defaults (except on Pigeon Hole Problems). We
believe that the main reason for this is that
MINTO’s defaults do not exploit the logical
reduction techniques that we have built into
SETSAT. There is also ample evidence that the
Jeroslow-Wang branching rule is more efficient
than MINTO's default branching scheme, depth—-
first search. For most problems, SETSAT re-
sults in search trees with fewer nodes than DPL
(Improved) as implemented by Hooker. This is

AE A5 FARE o) 83 WA HFE TAd I ALY AT 103
55 50 S S g

because SETSAT goes beyond DPL by solving
an LP relaxation at each node. We observed that
Hooker and Fedjki's Branch and Cut implemen-
tation created smaller enumeration trees than
SETSAT. We therefore need to focus on effi-
cient techniques for the generation of deep cutt-
ing planes for the set covering polyhedra defined
in this paper. This will require refinements of
the theory from a computational perspective as
well as fresh algorithmic techniques for cut gen-

eration.
4.2 Future Research

(i) The phenomenal success of MINTO A on
the pigeon hole problems requires further
examination. We suspect that the “clique”
cutting planes, generated automatically in
MINTO A, are the reason that the linear
relaxation is able to prove unsatisfiability.
This intuitive idea should be made rigorous
since it suggests that combinatorial theories
can have a substantial impact on logic.

(ii) As has been stated all along, SETSAT re

(iii)

presents only the first phase of theorem
proving in propositional logic on set cover—
ing formulations. Future versions will have
to incorporate effective cutting plane meth-
ods in SETSAT to exploit the body of
knowledge on the polyhedral combinatorics
of the set covering formulation of satisfi-
ability. This would combine the power of
some types of cutting planes with the logic
processing capabilities that we have given
SETSAT.

It may be worthwhile to “fine tune” the
CPLEX solver to handle the degeneracy in
the set covering linear relaxations more ef-
ficiently. Uitimately, we would like to adapt
SETSAT to solve the dual of the LP relax~
ation at each node to exploit the many con-
straints/fewer variables nature of these
model. Ideally, we would also hope that
specialized (combinatorial) linear program-
ming methods will be developed for LP re-
laxations of set covering models that will
replace CPLEX completely.

104 z A
O O i

{Table 1) Stuck-at-Zero Problems : Number of Nodes in Search Tree

Problem Sat. n m MINTO SETSAT with B&B(J/W) J. Hooker
(?) A B C D DPL(J/W) B&CUT

realla 12 Y 18 273 1 1 1 1 3 1
reallb 12 Y 15 110 1 1 1 1 3 1
reallo 11 Y 8 20 1 1 1 1 4 1
reallg 11 Y 16 100 1 1 1 1 5 1
reallr 11 Y 16 84 1 1 1 1 5 2
realiu 11 Y 8 24 1 1 1 1 5 1
reallv 11 Y 17 1 1 1 1 4 1
reallx 11 Y 14 7 1 1 1 1 4 1
really 11 Y 7 32 1 1 1 1 4 1
realZa 12 Y 18 275 1 1 1 1 3 1
realzb 12 Y 15 110 1 1 1 1 3 1
realZc 12 Y 17 342 1 1 1 1 3 1
real2d 12 Y 17 76 1 1 1 1 5 1
real2f 12 Y 16 306 1 1 1 1 4 1
real2g 12 Y 18 123 1 1 1 i 3 1
real?j 12 Y 17 200 1 1 1 1 6 1
realzk 12 Y 17 226 1 1 1 1 7 1
real2l 12 Y 15 119 1 1 1 1 6 1
real2m 12 Y 11 12 1 1 1 1 4 1
real2n 12 Y 18 62 1 1 1 1 4 1
real2o 12 Y 15 3 1 1 1 1 6 1
real2o 11 Y 6 18 1 1 1 1 4 1
realZp 11 Y 8 42 1 1 1 1 3 1
real?r 11 Y 16 & 1 1 1 1 5 2
real2q 11 Y 16 100 1 1 1 1 5 1
real2u 11 Y 24 1 1 1 i 5 1
realZv 11 Y 8 17 1 1 1 1 4 1
real2w 11 Y 7 32 1 1 1 1 4 1
realZx 11 Y 14 7 1 1 1 1 4 1

Note) Sat.(?) : Checking satisfiability(‘Y’ stands for ‘satisfiable problem’ and ‘N’ stands for ‘unsatisfiable problem”
: The number of automic propositions

: The number of clauses

: MINTO's default with cutting planes like clique, knapsack cover, flow cover

: MINTO's default without cutting planes

: SETSAT’s original result without tie-breaking in Jeroslow-Wang branching rule

: SETSAT's result with tie-breaking in Jeroslow-Wang branching rule

B & B(J/W) : Branch and Bound with Jeroslow-Wang branching rule based on set covering formulation
DPL(J/W) : DPL with Jeroslow-Wang branching rule

B & CUT : Branch and Cut

gQw»’38 -~

A A% FYHE o4 A VIE FAl o ALY A7 105
Lo e

(Table 2> Stuck-at-Zero Problems : CPU Seconds

MINTO SETSAT with B &B(J/W) J. Hooker
Problem Sat. (?) n om
A B C D DPL(J/W) B&CUT

realla 12 Y 18 273 3 3 3 2 007 0.03
reallb 12 Y 15 110 3 3 4 3 0.03 0.04
reallo 11 Y 8 2 3 4 3 3 0.02 0.04
reallq 11 Y 16 100 3 4 3 3 0.03 0.04
reallr 11 Y 6 # 3 4 3 3 0.03 0.12
realiu 11 Y 8 2 3 3 3 3 0.02 0.03
reallv 11 Y 8 17 3 3 3 2 0.02 0.04
reallx 11 Y 14 7 4 4 3 3 003 0.07
really 11 Y 7 32 3 2 3 3 0.02 0.03
real2a 12 Y 18 275 3 3 3 3 0.05 0.02
realzb 12 Y 15 110 3 2 3 3 0.03 0.06
real2c 12 Y 17 342 3 4 3 3 0.07 008
real2d 12 Y 7 7% 3 4 3 3 0.03 0.07
real2f 12 Y 16 306 3 4 2 3 0.09 007
real2g 12 Y 18 123 3 3 3 3 0.06 0.08
real2j 12 Y 17 200 4 4 3 4 0.05 0.05
realzk 12 Y 17 226 3 3 4 3 0.06 0.08
real?] 12 Y 15 119 3 3 3 3 0.4 0.08
real2m 12 Y 1 12 3 3 3 3 0.02 0.05
real?n 12 Y 18 62 3 3 3 3 0.03 0.05
realo 12 Y 5 3 3 3 3 3 0.03 0.03
realZo 11 Y 6 13 3 2 3 3 0.02 0.03
realZp 11 Y 8 42 3 3 3 3 0.02 0.02
real?r 11 Y 6 # 4 3 3 3 0.03 0.06
real2q 11 Y 16 100 3 3 3 3 0.03 0.04
realZu 11 Y 8 A 3 3 3 3 0.02 0.05
real2v 11 Y 8 17 3 3 3 2 0.01 0.07
real2w 11 Y 7 32 3 2 3 3 0.03 0.06
reale/ll—_r Y 4 77 3 3 3 3 0.03 0.04

106

BN

Parh

{Table 3> Random Problems : Number of Nodes in Search Tree

MINTO SETSAT with B & B(J/W) J. Hooker
Problem |Sat. (?) n o m
A B C D DPL(J/W) B&CUT

jnh 201 Y 100 800 2% 54 21 21 32 64
jnh 202 N 100 800 131 7007 109 % 7 7
jnh 203 N 100 800 7000 7007 139 139 153 191
jnh 204 Y 100 800 7000 700" 122 38 32 106
jnh 205 Y 100 800 47 7007 39 39 45 46
jnh 206 N 100 800 700" 700" 25 2% 409 136
jnh 207 N 100 800 700" 700" 275 25 343 97
jnh 208 N 100 800 700" 7007 103 101 141 43
jnh 209 Y 100 800 7000 700" 202 202 161 172
jnh 210 Y 100 800 173 700 49 40 70 57
jnh1 Y 100 80 700 7007 109 91 122 69
jnh 2 N 100 80 13 459 15 15 17 5
jnh 3 N 100 80 7000 700" 269 25 817 2%
jnh5 N 100 80 700" 700" 87 47 69 23
jnh 6 N 100 830 700" 700" 143 143 129 103
jnh 7 Y 100 830 12 18 13 13 31 4
jnh 8 N 100 80 629 161 127 119 113 27
jnh 9 N 100 80 700" 700" 87 87 109 15
jnh 10 N 100 80 7000 700" 37 37 5 41
jnh 11 N 100 830 7000 700" 181 181 269 139
jnh 12 Y 100 80 9 7 12 12 11 8
jnh 13 N 100 830 700" 469 75 75 8l 7
jnh 14 N 100 80 7000 700 197 183 137 3
jnh 15 N 100 &0 700" 700 167 167 157 41
jnh 16 N 100 80 7000 7007 25 303 1825 13%
jnh 17 Y 100 850 700" 700" 57 57 52 3]
jnh 18 N 100 &0 700" 700 261 279 409 201
jnh 19 N 100 &0 557 700 119 119 169 101
inh 20 N 100 80 613 700" 73 73 249 101
jnh 301 Y 100 900 7000 700" 274 191 342 300
jnh 302 N 100 900 1 469 11 11 1 1
jnh 303 N 100 900 700" 700" 187 1% 203 9
jnh 304 N 100 900 1% 381 29 29 2 5

Note) * : Not solved because of excessive CPU time and limit on number of nodes

AE 3% FARE 014 FAEe) WER BAd T ALLY AT 107
L e

(Table 4> Random Problems : CPU Seconds

MINTO SETSAT with B & B(J/W) J. Hooker
Problem | Sat. (?) n m
A B C D DPL(J/W) B&CUT

jnh 201 Y 100 800 115 1588 106 103 6.3 284
jnh 202 N 100 800 1000 2168 674 575 474 217
jnh 203 N 100 800 3045° 2480 939 932 66.6 18.3
jnh 204 Y 100 800 2080 2847 468 3% 84 781
jnh 205 Y 100 800 1280 1736 251 249 12.7 572
jnh 206 N 100 800 258" 2428 1404 1449 1266 %6.4
jnh 207 N 100 800 2630 2081° 1578 1591 1198 65.1
jnh 208 N 100 800 X4 2498 653 653 516 636
jnh 209 Y 100 800 2364 2075 1124 1109 0.8 719
jnh 210 Y 100 800 794 1964 229 207 93 376
jnh 1 Y 100 850 20714 2215 502 427 186 208
jnh 2 N 100 80 459 1930 196 193 154 26.3
jnh3 N 100 850 3639° 3624 1385 1519 239.1 1480
jnh5 N 100 850 31677 2491 762 423 28 8.3
jnh 6 N 100 850 3141 2722 1061 1047 8342 1499
jnh 7 Y 100 850 147 148 109 107 7.2 51.4
jnh 8 N 100 850 3304 752 879 860 62.8 587
jnh 9 N 100 830 324" 2922 760 753 789 826
jnh 10 N 100 80 3153 2879 349 344 36.9 8.0
jnh 11 N 100 80 3177 2403 1292 1273 1351 165.0
jnh 12 Y 100 80 603 A 130 128 51 2338
jnh 13 N 100 80 3288" 2206 542 535 453 346
jnh 14 N 100 80 B3 32 1358 1256 69.0 76.7
jnh 15 N 100 850 349" 2835 1193 1178 831 65.3
jnh 16 N 100 850 2710 2108 1304 1475 5424 5736
jnh 17 Y 100 80 34 1979 345 340 10.8 531
jnh 18 N 100 80 366" 2949 1516 1581 1582 1320
jnh 19 N 100 &0 3115° 3253 959 A7 875 1538
jnh 20 N 100 850 266 2218 553 552 1245 1263
jnh 301 Y 100 900 229" 4566 1303 1077 66.8 116.0
jnh 302 N 100 900 32 22U 199 1% 13.0 170
jnh 303 N 100 900 386" 37194 1512 1364 1114 982
jnh 304 N 100 900 1415 3436 331 3%5 213 434

108

x

al

{Table 5> Logic Circuit Construction : Number of Nodes in Search Tree

Sat. MINTO SETSAT with B & B(J/W) J. Hooker
Froblem ? " A B C D DPL(/W) | B&CUT
twoinvr 1 Y 0 M 5 2 5 8 2
twoinvrt N 30 8 2 17 17 15 7
tomstest Y »H 53 1 16 1 1 13 2
newtes 1 Y 5% & 1 1 23 1
newtest N % 87 102 251 1153 7
{Tabte 65 Logic Circuit Construction : CPU Seconds
. Sat MINTO SETSAT with B & B(J/W) J. Hooker
Problem) n m
) A B C D DPL(JW) | B&CUT
twoinvr 1 Y 0 7 5 4 4 4 0.12 050
twoinvrt N 0 8 7 5 7 6 021 27
tomstest Y »H 53 4 5 4 4 0.07 015
newtes 1 Y % 8 4 4 4 4 0.16 0.02
newtest N 5 87 18 28 5 5 86 14
(Table 7> Pigeon Hole Problems : Number of Nodes in Search Tree
Sat MINTO SETSAT with B &B(J/W) J. Hooker
Problem " n m
™ A B C D DPL(J/W) | B&CUT
hole6 N 2 133 1 249 ok 1595 6491 6299
hole7 N 5% 2 1 500 o ok 65561 65061
hole8 N 2 1 5000 *ok *ox 756687 ok
hole9 N 90 415 1 50007 *x 1215 Kk Hotox
holel0 N 10 561 1 5000" *ok 877 ok Hokk
Note) ™ : Not solved because memory allocation failed inside MINTO
** . Not solved by]. Hooker
{Table 8) Pigeon Hole Problems : CPU Seconds
Sat. MINTO SETSAT with B & B(J/W) J. Hooker
Problem n m
@ A B C D DPL(JW) | B&CUT
hole 6 N 42 133 4 315 *ok 262 239 265
hole 7 N 5% M 5 8 *x Hk 2887 3240
hole 8 N 2 W 5 112 % *x 40204 oo
hole 9 N 2 415 6 1511° . 646 - sk
hole 10 N 10 51 8 2018 *k 657 Hhok ok

s 98 TS o] 43 WAl sl UHEE FA

REFERENCES

[1] Araque, JR. and V. Chandru, “Some Facets
of Satisfiability,” Annals of Mathematics
and Artificial Intelligence, 1992.

[2] Balas, E. and S.M. Ng, “On the Set Cov-
ering Polytope I : All Facets with Coeffi-
cients in {0, 1, 2},” Mathematical Program-
ming, 43(1989), pp.57-69.

[3] Balas, E. and SM. Ng, “On the Set Cov-
ering Polytope II : Lifting the Facets with
Coefficients in {0, 1, 2},” Mathematical Pro-
gramming, 45(1989), pp.1-20.

{4] Blair, C., Jeroslow, R.G. and J.K. Lowe,
“Some Results and Experiments in Pro-
gramming Techniques for Propositional
Logic,” Computers and Operations Re-
search, 13(1988), pp.633-645.

[5] Chandru, V. and J.N. Hooker, Optimization
Methods for Logical Inference, Wiley In-
terscience Series in Discrete Mathematics
and Optimization, 1999.

[6] Conforti, M., Corneil, D.G. and A.R. Majoub,
“Ki-covers I : Complexity and Polytopes,”
Discrete Mathematics, 53(1986), pp.121-
142.

[7] Cornuejols, G. and A. Sassano, “On the 0,1
Facets of the Set Covering Polytope,” Math-
ematical Programming, 45(1989), pp.45-
56.

[8] Harche, F., Hooker, J.N. and G.L. Thompson,
“A Computational Study of Satisfiability
Algorithms for Propositional Logic,” Man-
agement Science Research Report MSRR-
567, Carnegie Mellon University, June 1991.

[9] Hooker, J.N., “Generalized Resolution and

o gk AMAY A+ 109

Cutting Planes,” Annals of Operations Re-
search, 12(1988), pp.217-239.

[10] Hooker, J.N., “A Quantitative Approach to
Logical Inference,” Decision Support Sys-
tems, 4(1988), pp.45-69.

[11] Hooker, J.N., “Input Proofs and Rank One
Cutting Planes,” ORSA Journal on Com-
puting, 1(1989), pp.137-145.

[12] Hooker, J.N. and C. Fedjki, “Branch~-and-
Cut Solution of Inference Problems in
Propositional Logic,” Working Paper 77-
88-89, Graduate School of Industrial Ad-
ministration, Carnegie Mellon University,
Pittsburgh, PA 15213.

(13] Jeroslow, R.E. and J. Wang, “Solving Pro-
positional Satisfiability Problems,” Annals
of Mathematics and Artificial Intelligence,
1(1990), pp.167-187.

[14] Ng, SM., “On the Set Covering Problem,”
Summer Paper, Graduate School of Indus-
trial Administration, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, 1982.

[15] Nobili, P. and A. Sassano, “Facets and
Lifting Procedures for the Set Covering
Polytope,” Mathematical Programming, 45
(1989), pp.111-137.

[16] Salvelsbergh, M.W.P., Sigismondi, G.C.,
and G.L. Nemhauser, “Functional Descrip-
tion of MINTO, a Mixed INTeger Opti-
mizer,” Report COC-91-03C, Georgia In-
stitute of Technology, Atlanta, Georgia
30332. ‘

[17] Sassano, A., “On the Facial Structure of
the Set Covering Polytope,” Mathemat-
ical Programming, 44(1989), pp.181-202.

