• Title/Summary/Keyword: Insulin sensitivity

Search Result 199, Processing Time 0.031 seconds

Anti-Diabetic and Anti-Obese Effects of Ginseng: from Root to Berry

  • Yuan Chun-Su
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.129-144
    • /
    • 2002
  • We investigated anti-hyperglycemic and anti-obese effects of Panax ginseng berry extract and its major constituent, ginsenoside Re, in obese diabetic C57BL/6J ob/ob mice and their lean littermates. Animals received daily intraperitoneal injections of Panax ginseng berry extract for 12 days. On Day 5, 150 mg/kg extract-treated ob/ob mice had significantly lower fasting blood glucose levels compared to vehicle-treated mice $(156{\pm}9.0\;mg/dl\;vs.\;243{\pm}15.8mg/dl,$ P<0.01). On Day 12, the extract-treated ob/ob mice became normoglycemic $(137{\pm}6.7\;mg/dl)$ and had significantly improved glucose tolerance. The overall glucose excursion during the two-hour intraperitoneal glucose tolerance test (IPGTT), calculated as area under the curve (AUC), decreased by $46\%$ (P<0.01) compared to vehicle-treated ob/ob mice. Glucose levels of lean mice were not significantly affected by the extract. The improvement in blood glucose levels in 150 mg/kg extracttreated ob/ob mice was associated with significant reduction in serum insulin levels of fed and fasting mice. Consistent with an improvement in insulin sensitivity, hyperinsulinemic euglycemic clamp study revealed a more than 2-fold increase in the rate of insulin-stimulated glucose disposal in treated ob/ob mice $(112{\pm}19.1\;vs.\;52{\pm}11.8{\mu}mol/kg/min$ for the vehicle group, P<0.01). In addition, 150 mg/kg extract-treated ob/ob mice, but not the lean mice, lost significant weight (from $51.7{\pm}1.9g\;on\;Day\;0\;to\;45.7{\pm}1.2$ on Day 12, P<0.01 compared to vehicle-treated ob/ob mice), associated with a significant reduction in food intake (P<0.05) and a very significant increase in energy expenditure (P<0.01) and body temperature (P<0.01). A 12-day treatment with 150 mg/kg Panax ginseng berry extract also significantly reduced plasma cholesterol levels in ob/ob mice. Additional studies demonstrated that ginsenoside Re, a major constituent of the ginseng berry, but not from the root, plays a significant role in anti-hyperglycemic action. This anti-diabetic effect of ginsenoside Re was not associated with body weight changes, suggesting that other constituents in the extract have distinct pharmacological mechanisms on energy metabolism. The identification of a significant anti-hyperglycemic activity in ginsenoside Re may provide an opportunity to develop a novel class of anti-diabetic agent.

  • PDF

Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과)

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol is a type of pentacyclic triterpene and has been reported to have pharmacological activities against various diseases; however, the effect of lupeol on glucose absorption has not been elucidated yet. This study aimed to investigate the effect of lupeol on glucose uptake in 3T3-L1 adipocytes. Lupeol significantly facilitated glucose uptake by translocating glucose transporter type 4 (GLUT4) to the plasma membrane of the 3T3-L1 adipocytes, which was related to activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and 5 'adenosine monophosphate-activated protein kinase (AMPK) pathways. In the PI3K/AKT pathway, lupeol stimulates the phosphorylation of insulin receptor substrate 1 (IRS-1), which activates PI3K. Its activation by lupeol promotes the phosphorylation of AKT, but not the atypical protein kinase C isoforms ζ and λ. Lupeol also promoted the phosphorylation of AMPK. The activation of AMPK increased the expressions of the plasma membrane GLUT4 and the intracellular glucose uptake. The increase in the glucose uptake by lupeol was suppressed by wortmannin (PI3K inhibitor) and compound C (AMPK inhibitor) in the 3T3-L1 adipocytes. The results indicate that lupeol can facilitate glucose uptake by increasing insulin sensitivity through the stimulation of the expression of plasma membrane glucose transporter type 4 via the PI3K/AKT and AMPK pathways in the 3T3-L1 adipocytes.

Effect of combined exercise on metabolic bio-marker in overweight and obese children (복합운동이 과체중 및 비만 남자 초등학생의 대사적지표에 미치는 영향)

  • Kim, Hyun-Jun;Kim, Tae-Un;Lee, Sangyeoup;Shin, Goon-Soo;Kim, Young-Joo;Kim, Su-Yung
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.9
    • /
    • pp.946-951
    • /
    • 2006
  • Purpose : The purpose of this study was to demonstrate the effectiveness of combined exercise for 12 weeks on the adiponectin and obesity related variables in overweight and obese children. Methods : Eighteen children in 5th grade in a certain elementary school in Busan were recruited. They were all overweight or obese children(more than 85 percentile in body mass index). Nine children in the experimental group were given exercises consisting of walking and band resistant training for 12 weeks. Auxological data(including height, weight and body fat mass) and laboratory data (fasting blood sugar, insulin, adiponectin) were checked at baseline and at the 1 week, and at the 4 weeks and 12 weeks stages of their exercise program. Insulin resistance and sensitivity were evaluated indirectly using HOMA index and QUICKI index. Results : Adiponectin gradually decreased until the 4 weeks point and gradually increased thereafter to the starting level at the 12 weeks stage. Body weight, body mass index(BMI) and HOMA index significantly decreased more at the 1 week, 4 weeks, and 12 weeks stages in the experimental group than in the control group. Body fat mass significantly decreased at 12 weeks. The change of insulin was significantly correlated with changes of body weight and BMI. But there was no correlation between changes of adiponectin and changes of insulin. Conclusion : Exercise seems to effect the adiponectin concentration. And it might be assumed that exercise increases the adiponectin concentration if it is continued for long time(may be more than 12 weeks). More studies may be necessary to draw that conclusion.

Anti-obesity and hypolipidemic effects of Rheum undulatum in high-fat diet-fed C57BL/6 mice through protein tyrosine phosphatase 1B inhibition

  • Lee, Woo-Jung;Yoon, Goo;Hwang, Ye-Ran;Kim, Yong-Kee;Kim, Su-Nam
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.141-146
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is important in the regulation of metabolic diseases and has emerged as a promising signaling target. Previously, we reported the PTP1B inhibitory activity of Rheum undulatum (RU). In the present study, we investigated the metabolic regulatory effects of RU in a high-fat diet (HFD) model. RU treatment significantly blocked body weight gain, which was accompanied by a reduction of feed efficiency. In addition, it led to a reduction of liver weight mediated by overexpression of PPAR${\alpha}$ and CPT1 in the liver, and an increase in the expression of adiponectin, aP2, and UCP3 in adipose tissue responsible for the reduction of total and LDL-cholesterol levels. Chrysophanol and physcion from RU significantly inhibited PTP1B activity and strongly enhanced insulin sensitivity. Altogether, our findings strongly suggest that 2 compounds are novel PTP1B inhibitors and might be considered as anti-obesity agents that are effective for suppressing body weight gain and improving lipid homeostasis.

Revisiting PPARγ as a target for the treatment of metabolic disorders

  • Choi, Sun-Sil;Park, Jiyoung;Choi, Jang Hyun
    • BMB Reports
    • /
    • v.47 no.11
    • /
    • pp.599-608
    • /
    • 2014
  • As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, $PPAR{\gamma}$ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that $PPAR{\gamma}$ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of $PPAR{\gamma}$ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of $PPAR{\gamma}$.

Proteome Analysis for 3T3-L1 Adipocyte Differentiation

  • Rahman, Atiar;Kumar, Suresh G.;Lee, Sung-Hak;Hyun, Sun-Hwang;Kim, Hyun-Ah;Yun, Jong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1895-1902
    • /
    • 2008
  • Adipose tissue is an important endocrine organ involved in the control of whole body energy homeostasis and insulin sensitivity. Considering the increased incidence of obesity and obesity-related disorders, including diabetes, it is important to understand thoroughly the process of adipocyte differentiation and its control. Therefore, we performed a differential proteome mapping strategy using two-dimensional gel electrophoresis combined with peptide mass fingerprinting to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3-L1 pre-adipocytes in response to an adipogenic cocktail. In the current study, we identified 46 differentially expressed proteins, 6 of which have not been addressed previously in 3T3-L1 cell differentiation. Notably, we found that phosphoribosyl pyrophosphate synthetase (PRPS), a regulator of cell proliferation, was preferentially expressed in pre-adipocytes than in fully differentiated adipocytes. In conclusion, our results provide valuable information for further understanding of the adipogenic process.

Effect of Fucoidan on Expression of Diabetes Mellitus Related Genes in Mouse Adipocytes

  • Kim, Kui-Jin;Lee, Ok-Hwan;Lee, Han-Chul;Kim, Young-Cheul;Lee, Boo-Yong
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.212-217
    • /
    • 2007
  • Fucoidan (fucan sulfate) is a fucose-containing sulfated polysaccharide from brown algae such as Fucus vesiculosus, Ecklonia kurome, and Cladosiphon okamuranus. The aim of this study was to investigate the effect of fucoidan on the expression of diabetes-related genes in mouse cell line 3T3-L1. 3T3-L1 adipocytes were cultured for 48 hr with or without fucoidan (10, 100, and 500 ppm) on a 60 mm dish. Reverse transcription polymerase chain reaction (RT-PCR) was used for measurement of peroxisome proliferators activated receptor ${\gamma}\;(PPAR{\gamma})$, CCAAT/enhancer binding protein ${\alpha}\;(C/EBP{\gamma})$, and glucose transporter 4 (GLUT4) RT-PCR analysis revealed that expression level of GLUT4, $PPAR{\gamma}$, and $C/EBP{\alpha}$ mRNAs increased with fucoidan treatment from 10 to 500 ppm in a dose-dependent manner. Fucoidan appears to enhance insulin sensitivity by increasing the expression level of diabetes-related genes in 3T3-L1 adipocytes. Therefore, fucoidan is potentially useful as a natural therapeutic material for hyperglycemia in type II diabetes patients.

Inhibitory effects of curcumin on high glucose-induced damages: Implications for alleviating diabetic complications

  • Kim, Kyeong Yee;Kim, Choon Young
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.536-541
    • /
    • 2017
  • Hyperglycemia found in diabetes mellitus causes several physiological abnormalities including the formation of advanced glycation end products (AGEs) and oxidative stress. Accumulation of AGEs and elevation of oxidative stress plays major roles in the development of diabetic complications. Adiponectin secreted from adipocytes is known to improve insulin sensitivity and blood glucose level. Curcumin (CCM), a bioactive component of turmeric, has been reported as a potent antioxidant. Present work aimed to elucidate the roles of CCM in high glucose-induced protein glycation and intracellular events in mature adipocytes. The results demonstrated that CCM inhibited the formation of fluorescent AGEs by approximated 52% at 3 weeks of bovine serum albumin (BSA) glycation with glucose. Correspondingly, CCM decreased the levels of fructosamine and ${\alpha}-dicarbonyl$ compounds during BSA glycation with glucose. These data suggested that CCM might be a new promising anti-glycation agent. Also, CCM reduced high glucose-induced oxidative stress in a dose dependent manner, whereas CCM treatment time-dependently elevated the expression of adiponectin gene in 3T3-L1 adipocytes. The findings from this study suggested the possibility of therapeutic use of CCM for the prevention of diabetic complications and obesity-related diseases.

The Role of Adiponectin in the Skin

  • Oh, Jieun;Lee, Yeongyeong;Oh, Sae-Woong;Li, TianTian;Shin, Jiwon;Park, See-Hyoung;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.221-231
    • /
    • 2022
  • Adiponectin (Ad), a 30 kDa molecule, is an anti-diabetic adipokine; although derived from adipose tissue, it performs numerous activities in various other tissues. It binds to its own receptors, namely adiponectin receptor 1(AdipoR1), adiponectin receptor 2 (AdipoR2), and T-cadherin (CDH13). Ad plays several roles, especially as a regulator. It modulates lipid and glucose metabolism and promotes insulin sensitivity. This demonstrates that Ad has a robust correlation with fat metabolism. Furthermore, although Ad is not in direct contact with other tissues, including the skin, it can be delivered to them by diffusion or secretion via the endocrine system. Recently it has been reported that Ad can impact skin cell biology, underscoring its potential as a therapeutic biomarker of skin diseases. In the present review, we have discussed the association between skin cell biology and Ad. To elaborate further, we described the involvement of Ad in the biology of various types of cells in the skin, such as keratinocytes, fibroblasts, melanocytes, and immune cells. Additionally, we postulated that Ad could be employed as a therapeutic target to maintain skin homeostasis.

Effect of Fermented Yacon (Smallanthus Sonchifolius) Leaves Tea on Blood Glucose Levels and Glucose Metabolism in High-Fat Diet and Streptozotocin-Induced Type 2 Diabetic Mice (야콘잎 발효차가 고지방식이와 스트렙토조토신으로 유도한 제2형 당뇨마우스의 혈당 및 당대사에 미치는 영향)

  • Kim, In-Sook;Lee, Jin;Lee, Jeom-Sook;Shin, Dong-Young;Kim, Myung-Joo;Lee, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • The aim of this study was to investigate the hypolgycemic activity of water extract of fermented yacon (Smallanthus sonchifolius) leaves tea (Yacon LWE) in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice. Male ICR mice were fed with a HFD (37% calories from fat) for 4 weeks prior to intraperitoneal injection with STZ (100 mg/kg body weight). Diabetic mice were supplemented with two doses of Yacon LWE (0.16% and 0.8%, wt/wt) for 6 weeks. The supplementation of high-dose Yacon LWE significantly lowered blood glucose levels and plasma ALT and AST activities compared with the control group. High-dose Yacon LWE also improved the insulin tolerance without any changes in plasma and pancreatic insulin concentrations in HFD/STZ-induced diabetic mice. Yacon LWE supplementation increased the insulin staining of pancreatic $\beta$-cells in a dose-dependent manner. Both 0.16% and 0.8% of Yacon LWE significantly elevated plasma leptin concentration, hepatic glucokinase activity and glucokinase/glucose-6-phosphatase ratio compared with the control group. However, glycosylated hemoglobin concentration was not different among the groups. These results suggest that high-dose Yacon LWE lowers the blood glucose level partly by enhancing insulin sensitivity and hepatic glucose metabolism in type 2 diabetic mice.