• Title/Summary/Keyword: Insulation lifetime

Search Result 53, Processing Time 0.024 seconds

Effect of Conductor Radius of Polyesterimide- Polyamideimide Enameled Round Wire on Insulation Breakdown Voltage and Insulation Lifetime

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.146-150
    • /
    • 2015
  • Insulation breakdown voltage and insulation lifetime were investigated in straight lines or twisted pairs with polyesterimide-polyamideimide enameled round wires (EI/AIW ). The enamel thickness was 50 μm and the conducting copper radius was 0.50, 0.75, 1.09, and 1.50 mm, respectively. There were many air gaps in a twisted pair therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen's law. Insulation breakdown voltage and insulation lifetime were highest in the sample of 0.75 mm conductor radius, which was higher than those values for 0.50 mm or 1.09 and 1.55 mm.

Lifetime Prediction on PVC Insulation Material for IV and HIV Insulated Wire (IV와 HIV 절연 전선용 PVC 절연재료의 수명 예측)

  • Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Weight and elongation changes of IV and HIV insulations were measured simultaneously at several given temperature of $80^{\circ}C$, $90^{\circ}C$ and $100^{\circ}C$. And the lifetime was predicted using the Arrhenius model. Based on the initial weight values, a 50% elongation reduction was seen at 6.96% for the IV insulation and 10.29% for the HIV insulation. The activation energy from the slope of the lifetime regression equation was calculated as 92.895 kJ/mol(0.9632 eV) for the IV insulation and 95.213 kJ/mol(0.9873 eV) for the HIV insulation. Also, the expected lifetime at the operating temperature of $30^{\circ}C$ to $90^{\circ}C$ is 2.02 to 94.32 years, and longer lifetime was predicted on HIV insulated wires than on IV insulated wires. As a result, it was found that the thermal characteristics of the HIV insulated wires were about 12.44% better than those of IV insulated wires under the same conditions of use.

Effect of Ambient Temperature on Insulation Lifetime of Winding Coil Prepared with Polyamideimide/Nanosilica Enamelled Wire

  • Park, Jae-Jun;Woo, Myung-Ha;Lee, Jae-Young;Hwang, Don-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.297-301
    • /
    • 2016
  • The effects of ambient temperature and diameter on the insulation lifetime of winding coils prepared with polyamideimide (PAI), flexural PAI (nanosilica 5 wt%) and anti-corona PAI (nanosilica 15 wt%) wires were investigated. The winding coils were made of enameled wire with enamel thickness of 30~50 μm. The thickness and width of the rectangular copper wires were 0.77~0.83 mm and 1.17~1.23 mm, respectively. The insulation breakdown lifetime decreased with increasing ambient temperature regardless of wire type and winding coil diameter under an inverter surge of 1.5 kV/20 kHz. The insulation breakdown lifetimes of φ5 mm winding coils at 150, 200, and 250℃ were 11.38, 5.19, and 4.22 min respectively, and those of φ10 mm winding coils at 150, 200, and 250℃ were 11.32, 5.79, and 4.57min respectively. The winding coil diameter had little effect on the insulation lifetime.

Lifetime Assessment for Oil-Paper Insulation using Thermal and Electrical Multiple Degradation

  • Kim, Jeongtae;Kim, Woobin;Park, Hung-Sok;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.840-845
    • /
    • 2017
  • In this paper, in order to investigate the lifetime of oil-paper insulation, specimens were artificially aged with thermal and electrical multiple stresses. Accelerated ageing factors and equivalent operating years for each aging temperatures were derived from results of tensile strengths for the aged paper specimens. Also, the evaluation for the multi-stress aged specimens were carried out through the measurement of impulse breakdown voltage at high temperature of $85^{\circ}C$. The lifetimes of the oil-paper insulations were calculated with the value of 66.7 for 1.0 mm thickness specimens and 69.7 for 1.25 mm thickness specimens throughout the analysis of impulse BD voltages using equivalent operating years, which means that dielectric strengths would not be severely decreased until the mechanical lifetime limit. Therefore, for the lifetime evaluation of the oil-paper insulation, thermal aging would be considered as a dominant factor whereas electrical degradation would be less effective.

Lifetime Prediction of PTFE Electrical Insulation Material Using Thermal Analysis Technique (열분석장치를 적용한 PTFE 전기절연재의 수명 예측 연구)

  • Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.296-297
    • /
    • 2011
  • A series of thermogravimetric analysis tests were conducted to predict the lifetime of the PTFE electrical insulation material. The prepared PTFE samples were heated from $25^{\circ}C$ to $700^{\circ}C$ at different heating rates. The kinetic energy of the PTFE was calculated from the logarithmic heating rate versus reciprocal temperature curves at constant conversion levels. Also, the lifetime of the PTFE for a given operating temperature can be predicted using the relationship between the activation energy and the estimated lifetime proposed by Toop.

  • PDF

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).

Insulation Life Estimation for Magnet Wire Under Inverter Surge and Temperature Stress (인버터 서지와 온도 스트레스 하에서 Magnet Wire 절연 수명평가)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.641-646
    • /
    • 2016
  • Coil specimen was prepared by coating a copper wire with two varnish thin layers: the first was polyamideimide (PAI)/nanosilica (5 wt%) varnish and the second was anti-corona PAI/nanosilica (15 wt%) varnish. Insulation breakdown voltage was investigated under inverter surge condition at $20^{\circ}C$, $70^{\circ}C$, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$, respectively. The insulation lifetime of the two layered coil was tens of times longer than that of original PAI coil. And the insulation lifetime decreased with increasing ambient temperature because there was weak binding strength between copper and varnish layer.

Development of Equipment to Measure Insulation Resistance and Evaluate the Lifetime of High-voltage Cable in Operation (운전 중인 고전압 케이블의 절연저항 측정 및 수명평가장치의 개발)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.237-242
    • /
    • 2014
  • In this paper, we find out the lifetime index in order to determine the time-dependent trend of deteriorating performance of 6.6kV high-voltage power cable in operation at a power station. The cable systems used in our study have been in operation for 13 years. With measurements for the 13 years, we analyzed the insulation resistances. By developing measuring equipment (comprized mainly of transformer, temperature sensor, and LPF) operating by the three-phase electric power, we analyzed the changing characteristics of insulation resistance of power cable. In contrast to 22kV cables, 6.6 kV cables have thicker insulation. Therefore the characteristics of 6.6kV cables are different from that of 22kV cables. The study found that as time passes, the insulation resistance does not decrease continuously; it decreases to a certain value, then does not decrease any more and shows properties of oscillation. We could not detect the process of deterioration in the preceding twelve years. The cable system showed great stability so that deterioration was not apparent. In this case, it is not possible to measure the future life indices of power cables because the lifetime indices are not predictable

Insulation Breakdown Characteristics of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.190-193
    • /
    • 2015
  • Insulation breakdown characteristics of an inverter surge resistant enameled wire were investigated in a twisted pair prepared with organic/inorganic hybrid nanocomposite. Organic polymer was polyesterimide-polyamideimide (EI/AI) and inorganic material was a nano-sized silica. The enamel thickness was 50 μm and the diameters of enameled copper wires were 0.75, 1.024, and 1.09 mm, respectively. There were many air gaps in a twisted pair. Therefore, when the voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen’s law. The insulation lifetime of the hybrid wire (HW) was 41,750 sec, which was 515.4 times more than the 81 sec of EI/AIW. In addition, the shape parameter of HW was 2.58, which was 3.4 times higher than 0.75 of EI/AIW.

Thermal Analysis and Equivalent Lifetime Prediction of Insulation Material for Nuclear Power Cable (원전 케이블용 절연재료의 열분석과 등가수명)

  • Kim, Ji-Yeon;Yang, Jong-Suk;Park, Kyeung-Heum;Seong, Baek-Yong;Bang, Jeong-Hwan;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.17-22
    • /
    • 2016
  • The activation energy of a material is an important factor that significantly affects the lifetime and can be used to develop a degradation model. In this study, a thermal analysis was carried out to evaluate and collect quantitative data on the degradation of insulation materials like EPR and CSP used for nuclear power plant cables. The activation energy was determined from the relationship between log ${\beta}$ and 1/T based on the Flynn.Wall.Ozawa method, by a TGA test. The activation energy was also derived from the relationship between ln(t) and 1/T based on isothermal analysis, by an OIT test. The activation energy of EPR derived from thermal analysis was used to calculate the accelerated aging time corresponding to the number of years of use, employing the Arrhenius equation, and determine the elongation corresponding to the accelerated aging time.