Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.5.297

Effect of Ambient Temperature on Insulation Lifetime of Winding Coil Prepared with Polyamideimide/Nanosilica Enamelled Wire  

Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
Woo, Myung-Ha (Department of Electrical and Electronic Engineering, Joongbu University)
Lee, Jae-Young (Hydrogen Fuel Cell Parts and Applied Technology Regional Innovation Center, Woosuk University)
Hwang, Don-Ha (The Korea Electrotechnology Research Institute)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.5, 2016 , pp. 297-301 More about this Journal
Abstract
The effects of ambient temperature and diameter on the insulation lifetime of winding coils prepared with polyamideimide (PAI), flexural PAI (nanosilica 5 wt%) and anti-corona PAI (nanosilica 15 wt%) wires were investigated. The winding coils were made of enameled wire with enamel thickness of 30~50 μm. The thickness and width of the rectangular copper wires were 0.77~0.83 mm and 1.17~1.23 mm, respectively. The insulation breakdown lifetime decreased with increasing ambient temperature regardless of wire type and winding coil diameter under an inverter surge of 1.5 kV/20 kHz. The insulation breakdown lifetimes of φ5 mm winding coils at 150, 200, and 250℃ were 11.38, 5.19, and 4.22 min respectively, and those of φ10 mm winding coils at 150, 200, and 250℃ were 11.32, 5.79, and 4.57min respectively. The winding coil diameter had little effect on the insulation lifetime.
Keywords
Enamel insulated wire; Partial discharge; Insulation lifetime; Insulation breakdown voltage;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Ildstad and S. R. Chalise, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 85 (2009). [DOI: http://dx.doi.org/10.1109/CEIDP.2009.5377720]   DOI
2 G. C. Stone, I. Culbert, E. A. Boulter, and H. Dhirani, IEEE Press Series on Power Engineering (2004).
3 E. Sugimoto, IEEE Electrical Insulation Magazine, 5, 15 (1989). [DOI: http://dx.doi.org/10.1109/57.16949]   DOI
4 J. J. Park, S. S. Kwon and J. Y. Lee, Trans. Electr. Electron. Mater., 12, 135 (2011). [DOI: http://dx.doi.org/10.4313/TEEM.2011.12.4.135]   DOI
5 T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 445 (2006). [DOI: http://dx.doi.org/10.1109/TDEI.2006.1624291]   DOI
6 C. Zou, J. C. Fothergill, and S. W. Rowe, IEEE Trans. Dielectr. Electr. Insul., 15, 106 (2008). [DOI: http://dx.doi.org/10.1109/TDEI.2008.4446741]   DOI
7 J. Castellon, H. N. Nguyen, S. Agnel, A. Toureille, M. Fréchette, S. Savoie, A. Krivda, and L. E. Schmidt, IEEE Trans. Dielectr. Electr. Insul., 18, 651 (2011). [DOI: http://dx.doi.org/10.1109/TDEI.2011.5931049]   DOI
8 H. Okubo, N. Hayakawa, and G. C. Montanari, IEEE Trans. Dielectr. Electr. Insul., 14, 1516 (2007). [DOI: http://dx.doi.org/10.1109/TDEI.2007.4401236].   DOI
9 H. Kikuchi and H. Hanawa, IEEE Trans. Dielectr. Electr. Insul., 19, 99 (2012). [DOI: http://dx.doi.org/10.1109/TDEI.2012.6148507]   DOI
10 Y. Kikuchi, T. Murata, Y. Uozumi, N. Fukumoto, M. Nagata, Y. Wakimoto, and T. Yoshimitsu, IEEE Trans. Dielectr. Electr. Insul., 15, 1617 (2008). [DOI: http://dx.doi.org/10.1109/TDEI.2008.4712665]   DOI
11 Indian Standard Winding Wires — Test Methods Part 5 Electrical Properties (First Revision) ICS 29.060.10 (2012).
12 J. J. Park, Y. B. Park, and J. Y. Lee, Trans. Electr. Electron. Mater., 12, 93 (2011). [http://dx.doi.org/10.4313/TEEM.2011.12.3.93]   DOI
13 J. J. Park, M. H. Woo, J. Y. Lee, and S. W. Han, Trans. Electr. Electron. Mater. (accepted) (2016).