• Title/Summary/Keyword: Installation Test

Search Result 1,486, Processing Time 0.147 seconds

Study on the dataset conformance testing IEC 61850 based IED (IEC 61850 IED대상 데이터세트 적합성 시험에 관한 연구)

  • Lee, N.H.;Jang, B.T.;Kim, J.H.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.371-374
    • /
    • 2008
  • KEPRI has carried out IEC61850 communication conformance test about the IED trial products. This paper describes dataset conformance testing, one of the IEC 61850-10 conformance test items, and test procedures on IED. KEPRI plans to construct the testing field of IEC 61850 based substation automation system with domestic IEDs confirmed their IEC 61850 communication service including dataset.

  • PDF

Optimum PVD installation depth for two-way drainage deposit

  • Chai, J.C.;Miura, N.;Kirekawa, T.;Hino, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.179-191
    • /
    • 2009
  • For a two-way drainage deposit under a surcharge load, it is possible to leave a layer adjacent to the bottom drainage boundary without prefabricated vertical drain (PVD) improvement and achieve approximately the same degree of consolidation as a fully penetrated case. This depth is designated as an optimum PVD installation depth. Further, for a two-way drainage deposit under vacuum pressure, if the PVDs are fully penetrated through the deposit, the vacuum pressure will leak through the bottom drainage boundary. In this case, the PVDs have to be partially penetrated, and there is an optimum installation depth. The equations for calculating these optimum installation depths are presented, and the usefulness of the equations is studied by using finite element analysis as well as laboratory model test results.

An Experimental study on evaluation of reinforcing installation increasing the penetration depth about upset of concrete pole (콘크리트 전주의 근입깊이 증대를 위한 보강장치의 실험적 성능평가)

  • Shin, Dong-Geun;Yoon, Ki-Yong;Lee, Seung-Hyun;Lee, Gyu-Se;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.71-74
    • /
    • 2008
  • For reinforcing the overturn of concrete pole instituted in slope ground and weak ground, in this paper, develop the reinforcing installation. The installation increase penetration depth and effect of increasing the penetration depth is verified by experimental paper of Lim, jong suk(2004). In this research, through the experiment of bending test using the reinforcing installation, evaluate the performance. In the result of experiment, concrete pole behave elastically in design load and all sample are safe up to failure load.

  • PDF

Study on the Control System of Verification Test for Offshore Installation Simulation (해양플랜트 환경모사를 위한 실증시험 시스템 구축에 관한 연구)

  • Ju, H.D.;Kim, T.O.;Kang, G.H.;Ha, Y.C.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.48-52
    • /
    • 2012
  • A reliable test of offshore plant hold a key post in offshore engineering technology. The offshore self-supporting of process module design and basic design technology needs engineering verification based on the reliable test. And also reliable verification test data is very important. Therefore, verification test system for offshore installation simulation is necessary. This paper explains design of data acquisition system and control system based on the parameter of measured and controlled variable which is for establishing offshore installation simulation system.

  • PDF

Bending-shear Strength of Concrete-filled Double Skin Circular Steel Tubular Beams with SMA and Rebar in Normal-and-High-strength Concrete

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • A concrete-filled circular steel tube beam was fabricated, and a bending test was performed to analyze its failure modes, displacement ductility, bending-shear strength, and load-central deflection relationship. For the bending test, the installation position of the shape memory alloy (SMA) inside and outside the double-skin steel tube was used, and the rebar installation position, the concrete strength, the mixing of fibers, and the inner-outer diameter ratio as the main parameters. The test results showed that the installation positions of the reinforcements inside and outside the double-skin steel tube and the inner-outer diameter ratio of the steel tube affected the ductility, maximum load, and failure mode. In general, the specimen made of general concrete with SMA installed outside and inside (OI) the double-skin steel tube showed the best results.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

DEVELOPMENT OF AN IMPROVED INSTALLATION PROCEDURE AND SCHEDULE OF RVI MODULARIZATION FOR APR1400

  • Ko, Do-Young
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.89-98
    • /
    • 2011
  • The construction technology for reactor vessel internals (RVI) modularization is one of the most important factors to be considered in reducing the construction period of nuclear power plants. For RVI modularization, gaps between the reactor vessel (RV) core-stabilizing lug and the core support barrel (CSB) snubber lug must be measured using a remote method from outside the RV. In order to measure RVI gaps remotely at nuclear power plant construction sites, certain core technologies must be developed and verified. These include a remote measurement system to measure the gaps between the RV core-stabilizing lug and the CSB snubber lug, an RVI mockup to perform the gap measurement tests, and a new procedure and schedule for RVI installation. A remote measurement system was developed previously, and a gap measurement test was completed successfully using the RVI mockup. We also developed a new procedure and schedule for RVI installation. This paper presents the new and improved installation procedure and schedule for RVI modularization. These are expected to become core technologies that will allow us to shorten the construction period by a minimum of two months compared to the existing installation procedure and schedule.

Evaluation of Installation Damage Factor for Geogrid using Maximum Particle Size of Backfill Material (뒤채움 최대입도를 이용한 지오그리드 보강재의 시공손상계수 산정 방법)

  • Kim, Kyung-Suk;Choi, Young-Chul;Kim, Tae-Soo;Lim, Seoung-Yoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • Reduction Factor for Installation Damage required for calculation of design strength of geogrid used in MSEW(mechanically stabilized earth wall) design is usually obtained in the field test simulating real construction condition. However, damages occurred in geogrid during backfill work are influenced by many factors such as polymer types, unit weight per area, backfill construction method and gradation of backfill material and field test considering these factors demands lots of time and costs. In this study, factors affecting installation damage are analyzed and empirical method for evaluating reduction factor for installation damage using maximum particle size in backfill material is suggested.

  • PDF

The Field Applica1ion of The 154[kV] low Noise Transformers (154[kV] 저소음 변압기의 현장적용)

  • Kweon, Dong-Jin;Koo, Kyo-Sun;Woo, Jung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.124-129
    • /
    • 2009
  • Recently, there has been a growing global interest in environmental conservation, and the field of electric power equipment has been working to become more environment-friendly. Accordingly the 154[kV] low noise transformer is developed through the research. The low noise transformer decreases the audible noise level but the low noise transformer has several changes in the increase of weight and volume and the application of rubber damper. Therefore it is necessary to inspect the test, transportation, installation and operation about field application. In this paper, we investigate the standards of the audible noise level, the weight and volume of the transportation, the installation space and operation in order for effective field application.