• Title/Summary/Keyword: Input power estimation

Search Result 232, Processing Time 0.029 seconds

A Study of Boiler Control Loop Simulation in Thermal Power Plant (화력발전소 보일러 제어루프의 시뮬레이션에 관한 연구)

  • Lee, J.H.;Lee, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.868-870
    • /
    • 1999
  • In this paper we obtain a discrete mathmatical model of a Boiler control system from expermental data, we find appropriate input signal and parameter estimation algorithm for identification of the Boiler control system in power plant. Under these conditions experimental data are collected from real system and parameters are estimated by the Recursive Least Square algorithm. The computer simulation results show the parameter estimation algorithm for identification and the effectiveness of controller design of the Boiler control system.

  • PDF

Real-time Stability Assessment and Energy Margin Estimation using Fuzzy (퍼지를 이용한 실시간 안정도 판별과 에너지 마진의 추정)

  • Choi, Won-Chan;Kim, Soo-Nam;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1239-1241
    • /
    • 1999
  • In this paper, we propose real time transient stability assessment and energy margin estimation using fuzzy approximate reasoning. The proposed method used rotor angle, kinetic energy and acceleration power of generators at clearing time as fuzzy input. In order to calculate energy margin in transient energy function (TEF), we obtained controlling unstable equilibrium point (UEP) using mode of disturbance procedure (MOD). The proposed algorithm is tested on 4-machine, 6-bus, 7-line power system to prove of effectiveness.

  • PDF

Estimation of Sparse Channels in Millimeter-Wave MU-MIMO Systems

  • Hu, Anzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2102-2123
    • /
    • 2016
  • This paper considers a channel estimation scheme for millimeter-wave multiuser multiple-input multiple-output systems. According to the proposed method, parts of the beams are selected and the channel parameters are estimated according to the sparsity of channels and the orthogonality of the beams. Since the beams for each channel become distinct and the signal power increases with the increased number of antennas, the proposed approach is able to achieve good estimation performance. As a result, the sum rate can be increased in comparison with traditional approaches, and channels can be estimated with fewer pilot symbols. Numerical results verify that the proposed approach outperforms traditional approaches in cases with large numbers of antennas.

Probabilistic Modeling of Photovoltaic Power Systems with Big Learning Data Sets (대용량 학습 데이터를 갖는 태양광 발전 시스템의 확률론적 모델링)

  • Cho, Hyun Cheol;Jung, Young Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.412-417
    • /
    • 2013
  • Analytical modeling of photovoltaic power systems has been receiving significant attentions in recent years in that it is easy to apply for prediction of its dynamics and fault detection and diagnosis in advanced engineering technologies. This paper presents a novel probabilistic modeling approach for such power systems with a big data sequence. Firstly, we express input/output function of photovoltaic power systems in which solar irradiation and ambient temperature are regarded as input variable and electric power is output variable respectively. Based on this functional relationship, conditional probability for these three random variables(such as irradiation, temperature, and electric power) is mathematically defined and its estimation is accomplished from ratio of numbers of all sample data to numbers of cases related to two input variables, which is efficient in particular for a big data sequence of photovoltaic powers systems. Lastly, we predict the output values from a probabilistic model of photovoltaic power systems by using the expectation theory. Two case studies are carried out for testing reliability of the proposed modeling methodology in this paper.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.

PSO-optimized Pareto and Nash equilibrium gaming-based power allocation technique for multistatic radar network

  • Harikala, Thoka;Narayana, Ravinutala Satya
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.17-30
    • /
    • 2021
  • At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies-generalized Nash game and cooperative and noncooperative game theory.

Input Power Estimation of Point Loaded Cylindrical Shell (원통형쉘 구조물의 점가진 입력파워 추정)

  • Lee, Kyoung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.250-257
    • /
    • 2011
  • The power input to an infinite cylindrical shell excited by a point force is investigated. The circumferential direction and axial direction of the cylindrical shell is assumed as a two-dimensional unbounded medium, and the point force is replaced as a periodic array of imaginary sources. The spatial Fourier transform is taken from the equation of motion of the cylindrical shell, which is derived from the static model of Donell-Mushtari-Vlasov. The inverse Fourier transform is taken to derive the vibration responses. Mobility from out-of-plane forces and in-plane forces are derived from the obtained vibration responses. The theory is applied to a cylindrical shell excited by a normal direction of point force.

  • PDF

Comparison of SRM rotor position estimation algorithm using flux-current methods (자속 모델 기준 추종방식을 이용한 SRM 회전자 위치평가알고리즘 비교)

  • 안재황
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.697-700
    • /
    • 2000
  • This paper introduces a new rotor position estimation algorithm for the SRM based on the magnetizing curves of aligned and unaligned rotor positions. The flux linkage is calculated by the measured data from phase voltage and phase current and the calculated data are used as the input of magnetizing profiles for rotor position detection. Each of the magnetizing profiles consisted of the methods using the neural network and fuzzy algorithm And also the optima phase is selected by phase selector. To demonstrate the promise of this approach the proposed rotor position estimation algorithms are verified by the experiment results or variable spee range.

  • PDF

Identification of DC-Link Capacitance for Single-Phase AC/DC PWM Converters

  • Pu, Xing-Si;Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.270-276
    • /
    • 2010
  • In this paper, a capacitance estimation scheme for DC-link capacitors for single-phase AC/DC PWM converters is proposed. Under the no-load condition, a controlled AC current (30[Hz]) is injected into the input side, which then causes AC voltage ripples at the DC output side. Or, a controlled AC voltage can be directly injected into the DC output side. By extracting the AC voltage/current and power components on the DC output side using digital filters, the capacitance value can be calculated, where the recursive least squares (RLS) algorithm is used. The proposed methods can be simply implemented with software only and additional hardware is not required. From the experiment results, a high accuracy estimation of capacitances less than 0.85% has been obtained.

Direct Power Sensorless Control of Three-Phase AC/DC PFC PWM Converter using Virtual Flux Observer (가상 자속관측기를 이용한 3상 AC/DC PFC PWM 컨버터의 직접 전력 센서리스 제어)

  • Kim, Young-Sam;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1442-1447
    • /
    • 2012
  • In this paper, direct power control system for three-phase PWM AC/DC converter without the source voltage sensors is proposed. The sinusoidal input current and unity effective power factor are realised based on the estimated flux in the observer. Both active and reactive power calculated using estimated flux. The estimation of flux is performed based on the Reduced-order flux observer using the actual currents and the command control voltage. The source voltage sensors are replaced by a flux estimator. The active and reactive powers estimation are performed based on the estimated flux and Phase anble. The proposed algorithm is verified through simulation and experiment.