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Abstract: This paper describes a method to estimate the noise power using the minimum statistics 
approach, which was originally proposed for audio processing. The proposed minimum statistics-
based method separates a noisy image into multiple frequency bands using the three-level discrete 
wavelet transform. By assuming that the output of the high-pass filter contains both signal detail 
and noise, the proposed algorithm extracts the region of pure noise from the high frequency band 
using an appropriate threshold. The region of pure noise, which is free from the signal detail part 
and the DC component, is well suited for minimum statistics condition, where the noise power can 
be extracted easily. The proposed algorithm reduces the computational load significantly through 
the use of a simple processing architecture without iteration with an estimation accuracy greater 
than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored 
image can be obtained using the estimated noise power information in parametric image restoration 
algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The 
experimental results show that the proposed algorithm can estimate the noise power accurately, and 
is particularly suitable for fast, low-cost image restoration or enhancement applications.     
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1. Introduction 

Image restoration estimates the original undistorted 
image from an observed image using an inverse operation 
of various image degradation factors, such as out-of-focus, 
motion blur, and atmospheric turbulence, in an imaging 
system. In particular, based on the image degradation 
model, the image restoration process is considered 
adeconvolution of the point spread function (PSF) or 
statistical inverse problem (SIP). Because image 
restoration is almost always an ill-posed problem, its 
solution either does not exist or it is not unique. This 
results in a set of feasible solutions rather than a unique 
one. A priori information of the original image is used 
most widely to select the best solution in the set. This type 
of image restoration approach includes a Wiener filter, 
constrained least squares (CLS) filter, and iterative 

regularization, all of which fall into the category of 
regularized image restoration [1]. 

A parametric Wiener filter approximates the noise-to-
signal power ratio (NSPR) to a constant for simplified, 
efficient realization. On the other hand, the CLS filter and 
iterative regularization incorporate a priori information as 
a form of a regularization constraint into the solution. The 
relative amount of the regularization constraint is 
controlled by a regularization parameter. The 
abovementioned image restoration methods are called 
parametric image restoration because they use a single 
parameter to control the amount of regularization. Among 
the various sophisticated image restoration approaches 
available, a parametric image restoration is particularly 
suitable for efficient, realistic applications, such as digital 
auto-focusing and motion blur removal using an embedded 
processor or a system on chip (SOC). For the successful 
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deployment of parametric image restoration to the real 
imaging system, an accurate estimation of noise power is 
of paramount importance because the regularization 
parameter is related directly to the noise power. 

Although many image denoising methods for image 
enhancement have been proposed, their application to 
parametric image restoration exhibits limited performance 
because they mainly extract the original signal instead of 
estimating the noise power [2, 3]. On the other hand, blind 
deconvolution is considered to be the most fundamental 
approach to estimating the original image without 
information on the image degradation model and noise 
characteristics. A blind deconvolution method assumes the 
observed image as an auto-regressive moving-average 
(ARMA) process. In this method, the modeling error of the 
auto-regressive (AR) process is considered as noise, and 
the parameters of moving-average (MA) process is 
considered as an image degradation factor [4-6]. Most 
blind deconvolution methods, however, cannot guarantee 
consistent performance with various images and noise 
characteristics. 

A practical approach to estimate the regularization 
parameters instead of directly obtaining the noise power 
uses either discrepancy principle [7] or generalized cross-
validation [8]. These methods require a high computational 
load due to the nature of the iterative estimation, and 
cannot be considered a solution of a practical, real-time 
image restoration. Another method to estimate the optimal 
regularization parameter uses the L-curve. Each point on 
the L-curve in the two-dimensional (2D) coordinate 
represents the energy of residual error and signal energy 
calculated using the corresponding regularization 
parameter. Because this curve generally has the “L” shape, 
the regularization parameter corresponding to the highest 
curvature point is considered to be the optimal value [9]. 
The U-curve method is a variant of the L-curve method 
[10]. Both L-curve and U-curve methods require a large 
number of imager restoration processes with various 
regularization parameters, and are unsuitable for practical 
applications. 

Modeling or analyzing noise has become a 
fundamental problem in the signal processing area [11]. In 
speech signal processing, the minimum statistics (MS) 
method is used widely to estimate ambient noise power 
under the assumption that there are breaking periods 
between words in human speech [12]. In other words,a 
speech-absent period contains only noise components, and 
its signal power is estimated using a windowed Fourier 
transform to obtain the noise power. 

To apply the MS approach to estimate the noise in an 
image, it is important to note that there is no signal-absent 
region in a general image, and that a flat region can play 
the role of an absent period without a direct current (DC) 
component. In the flat region, the low-frequency 
component contains the DC component of the signal, and 
the high-frequency component contains only noise. In this 
context the proposed noise power estimation method uses 
a discrete wavelet transform to decompose the different 
frequency bands while preserving the locations. Multi-
resolution wavelet transform can extract the flat regions, 
and the noise power is estimated by calculating the signal 

energy of the corresponding high-frequency component. 
This paper is organized as follows. Section 2 explains 

the image degradation model including the point spread 
function (PSF) and noise, and briefly presents the basic 
terminologies for the multiresolution discrete wavelet 
transform. Section 3 presents the proposed MS-based noise 
power estimation method for a parametric image 
restoration. Section 4 summarizes the experimental results 
of noise power estimation and parametric image 
restoration, and section 5 concludes the paper. 

2. Theoretical Background 

2.1 Image Degradation Model 
In digital image processing, the general, discrete model 

for linear degradation caused by blurring and additive 
noise can be expressed as the following superposition 
summation,  
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where ),( jif  represents an original M N×  image, and 

( , ; , )h i j k l is the 2D PSF of the imaging system. 
The ),;,( lkjih  operator, and ( , )n i j  additive noise, which 
is normally modeled as a white Gaussian process. In this 
paper, it was assumed that the PSF linear space invariant 
(LSI) is 
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where ** indicates a 2D convolution. Using the LSI image 
degradation model in (2), the PSF does not change over the 
entire image. A major advantage of the LSI model is to 
reduce the computational load significantly using 
frequency domain processing. 

2.2 Discrete Wavelet Transform 
The discrete wavelet transform passes the input signal 

through a series of filters. A signal can be decomposed into 
a set of band-limited components, called sub-bands, which 
can be reassembled to reconstruct the original image 
without error. As shown in Fig. 1, both sub-bands, which 
are outputs of 0 ( )h n and 1( )h n , can be downsampled 
without any loss of information because the bandwidth is 
smaller than that of the original signal. 0 ( )h n and 1( )h n are 
called analysis filters, and 0 ( )g n and 1( )g n are called 
synthesis filters. The output of the low-pass filter 0 ( )h n  
represents an approximation of ( )x n , and the output of the 
high-pass filter 1( )h n represents a detailed part of ( )x n . 

The reconstructed signal ˆ( )x n  is obtained by adding 
the upsampled and filtered version of 0 ( )y n and 1( )y n . For 
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error-free construction, ˆ( ) ( )x n x n= , the following 
conditions must be satisfied. 

 

 0 0 1 1

0 0 1 1

( ) ( ) ( ) ( ) 0 ,
( ) ( ) ( ) ( ) 2,

H z G z H z G z
H z G z H z G z
− + − =

+ =
 (3) 

 
where ( )iH z  and ( )iG z , { }0,1i∈ , respectively represent 
z-transforms of ( )ih n and ( )ig n . (3)is called the conditions 
for perfect reconstruction. 

After some algebraic step, the conditions in (3)are 
expressed as the following biorthogonality constraint: 

 
 ( ) ( ) ( ) ( ) { }2 , , , 0,1 ,i jh n k g k i j n i jδ δ− = − ∈  (4) 

 
which is imposed on the analysis and synthesis filter 
impulse responses of all two-band, real-coefficient, perfect 
reconstruction filter banks. 

If the filters are constrained further to be orthonormal, 
such as 

 
 ( ) ( ) ( ) ( ) { }, 2 , , 0,1 ,i jg n g n m i j m i jδ δ+ = − ∈  (5) 

 
given a synthesis low-pass filter, 0g , impulse responses 0h , 

1h , and 1g can be determined as follows: 
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n
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∈
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where 2K  represents the length of each filter. 

3. Multiresolution Analysis for a Noise 
Power Estimation 

As stated in section 2, the DWT can effectively search 
flat areas within an image. On the other hand, the 
coefficient in each high-pass sub-band contains both signal 
detail and noise. For the decomposition, they can be 
classified into the signal detail and pure noise parts. For 
this, in (2), the input image is expressed as a sum of low-
pass and high-pass filtered signals, 

 
 ( , ) ( , )** ( , ) ( , )** ( , ) ( , ),low highy i j h i j f i j h i j f i j n i j= + +   
  (7) 

 
where highf  and lowf  represent the high-frequency and low-
frequency parts, respectively. By applying the DWT,  

  (7) can be formulated as  
 

 
( , ) ( , )** ( , ),
( , ) ( , )** ( , ) ( , ).

low low

high high
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y i j h i j f i j n i j

=
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Because the noise is a random signal, most of ),( jin  is 

included in the high-frequency sub-band of the DWT. 
Using the 3-level DWT, the location of the detailed edge 

( , )** ( , )highh i j f i j , is detected, and the noise power can be 
estimated by excluding the edge region.  

Fig. 1 shows a block diagram of the proposed 
algorithm. 

As shown in Fig. 2, the proposed noise power 
estimation algorithm is composed of three steps, such as 3-
level DWT, edge-map generation, and signal power 
estimation. 

3.1 Part of DWT 
The proposed algorithm first performs the 3-level 

DWT, as shown in Fig. 3. 
Multiresolution analysis becomes possible by 

alternative wavelet transforms along each direction. In all 
subsequent decompositions, the approximation sub-band, 
which is the sub-image located at the upper-left-hand 
corner of the previous decomposition, becomes the input 
for the next level DWT. Each decomposition produces four 
quarter-size output images that are arranged, as shown in 
Fig. 3 and substituted for the input from which they were 
derived. Based on both theoretical and experimental 
observations, the 2nd and 3rd level DWTs could extract the 
pure noisy region from the meaningful entities of the 
original image. In particular, the 1st level diagonal detail 
component contains both a meaningful edge and noise, 

Fig. 1. Two-band filter bank overview. 

 Fig. 2. Block diagram of the proposed algorithm. 
 

 
(a) (b) 

Fig. 3. 3-level DWT (a) the pyramid of DWT sub-bands,
(b) corresponding example using Lena image. 
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among which only the edge regions are removed using the 
higher-level detail components.  

3.2 Edge-map Generation in the DWT-
Space  

This subsection describes how the edge map is 
generated to distinguish the flat regions in an image. In this 
study, the flat region detection is motivated by the 
detection of a speech absent period in speech processing. 
In general, it is difficult to detect the edge using only the 
signal level DWT when the image contains a substantial 
amount of noise. Therefore, the 2nd and 3rd level DWT are 
also needed to extract the edges. The edge-map in the 2nd 
and 3rd level detail coefficients are defined using the 
binarization function as follows: 

 

 { }1, [ , ]
[ , ] , for , , ,

0,
i

i

if x m n t
e m n i V H D

otherwise
⎧ >

= ∈⎨
⎩

 (9) 

 
where , ,V Hx x  and Dx  respectively represent the 
absolute values of vertical, horizontal, and diagonal details 
in the DWT. The threshold values for each level are 
chosen experimentally as 
 

 2

3

(5 max 4 min) / 9,
(5 max 3 min) / 8,

level

level

t
t
−

−

= × + ×
= × + ×

 (10) 

 
where max  and min  represent the biggest and smallest 
wavelet coefficients, respectively.  

After the edge map values ie  are located, they are 
integratedas follows: 

 
{ }( , ) ( , ) ( , ) ( , ), for 2,3 .l V H De m n e m n e m n e m n l= =∪ ∪  

  (1) 
The wavelet transform reorganizes the image content 

into a low-resolution approximation and a set of details of 
different orientations and different scales. Therefore, the 
sizes of these edge-maps are smaller than the original 
image because of the down-sampling by 2 at each level. 
Therefore, they are used to relocate the edge in the 1st level 
DWT. The nearest neighbor interpolation was used to 
register the differently scaled edge maps. 

Because the 3rd level DWT coefficients are generated 
by low-pass filtering signals twice, the corresponding 
detail components contain only significant edges without 
random noise. Therefore the resulting edge map can be 
expressed as 

 
 [ ] [ ]2 32 4

( , ) ( , ) ( , ) ,e m n e m n e m n= ∩  (12) 
 

where [ ]2 2
( , )e m n  represents the 2nd level edge map 

upsampled by 2, and [ ]3 4
( , )e m n is the 3rd level edge map 

upsampled by 4.  
The morphological dilation operation near the edge is 

used to avoid the case where the details are classified as 
low components near the sharp edges. The dilation 

operation is expressed as 
 

 
1, ( , ) 1

( 1, 1) .
0,M

if e m n
e m n
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± ± = ⎨
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 (13) 

 
The dilated edge-map provides a better chance to 

accurately locate the edges in the original image. Therefore, 
the pixels along the resulting edge are not used, and the 
other pixels in the flat region serve as a feasible region for 
a noise power estimation. 

3.3 Estimating the noise power  
As mentioned in section 2, the noise is defined as a 

zero mean Gaussian random signal with an autocorrelation 
as follows: 

 
 )()]()([)( 2 τδσττ =+= tNtNErNN , (14) 

 
where 2σ  represents the variance, E is the expectation 
operation, and ( )δ τ is the unit impulse. The power 
spectrum of noise is given by the Fourier integration as 
follows: 
 

 2 2( ) ( ) .j ft
NN NNP f r t e dtπ σ

∞
−
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= =∫  (15) 

 
The power spectrum expression in (15) justifies that the 

variance of a signal-absent region is equal to the constant 
the noise power spectrum. Given the measured noise 
variance, the flat region in the 1st level diagonal detail band 
is taken as follows  
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where Dx  represents the 1st level diagonal detail band, N  
is the estimated set of noise samples in the signal-absent 
region. Finally the noise power is computed as follows: 
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where I and J  respectively represent the vertical and the 
horizontal sizes of the diagonal detailband in the 1st level 
DWT, and TN  is the number of samples in the flat region. 

4. Experimental Results 

This section presents the simulation results of the 
proposed noise power estimation algorithm and its 
application to parametric image restoration algorithms. A 
set of standard 256 256×  8-bit grayscale images were 
tested including Lena, Cameraman, Barbara, Boat, and 
Goldhill. These test images were degraded by simulating 3 
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to 11 pixel uniform blurs with additive Gaussian white 
noise of 0 to 70dB SNR. The proposed method was then 
used to estimate the noise power for each image to 
evaluate the performance of the estimation method. Table 
1 shows the experimental results by comparing the real and 
estimated noise powers. 

The numerical data given in Table 1 are the real and 
estimated values. As shown in Table 1, the proposed 
estimation method gives accurate noise power values with 
SNR 0 to 30dB, which is illustrated in Fig. 4 for the Lena 
image.The vertical axis of the graph in Fig. 4 represents 
the level noise power on a log scale, and the horizontal 
axis indicates the SNR values. For images with SNR 0 to 
30dB, the estimated noise powers were similar to the real 
noise power regardless of the blur sizes. As the SNR was 
increased above 40dB, the number of noise samples 
decreased. On the other hand, for images with SNR 40dB 
or higher, the number of detected noise samples decreased 
significantly and the estimation accuracy decreased. Larger 
blur sizes provide a more accurate estimation with SNR 
40dB or higher because it suppresses more edge in the 
original image. 

Table 2 shows the image restoration results of the 
Wiener filter using estimated noise power. Given the 

spectrum of the original image, the Wiener filter can 
theoretically minimize the mean squared error between the 
original and restored images with the frequency responses 
as follows: 

 

 
),(/),(),(

),(),( 2

*

vuSvuSvuH

vuHvuW
xxηη+

=

, 
(18)

 

Table 1. Results of noise estimation (variance of noise).

SNR [dB] Image Blur Size 
0 10 20 30 40 50 60 70 

Real Value 3239.667 323.9667 32.3967 3.2397 0.324 0.0324 0.0032 0.0003 

Lena 
3x3 
5x5 
7x7 
9x9 

11x11 

3210.103 
3221.812 
3209.968 
3226.263 
3254.237 

328.7249
330.5618
328.8707
326.8065
324.4781

33.5885
32.8476
32.4743
32.7087
32.698 

4.4679 
3.4774 
3.3669 
3.2984 
3.2888 

1.5785 
0.5635 
0.4416 
0.3854 
0.3587 

1.2934 
0.2797 
0.1513 
0.0964 
0.0671 

1.2687 
0.2532 
0.1229 
0.0685 
0.0386 

1.2671 
0.25 

0.1203 
0.066 
0.036 

Real Value 4210.47 421.047 42.1047 4.2105 0.421 0.0421 0.0042 0.0004 

Camera-man 
3x3 
5x5 
7x7 
9x9 

11x11 

4289.119 
4275.86 
4285.852 
4263.994 
4249.764 

427.3593
425.0564
424.2836
425.6784
424.5425

44.7465
43.0084
42.5722
42.3067
42.2741

6.6499 
4.7718 
4.4455 
4.3027 
4.2588 

2.8844 
0.9294 
0.6188 
0.5046 
0.4648 

2.4891 
0.5445 
0.2322 
0.1252 
0.0845 

2.4563 
0.5052 
0.1939 
0.0872 
0.0464 

2.4542 
0.501 

0.1895 
0.0836 
0.042 

Real Value 2792.166 279.2166 27.9217 2.7922 0.2792 0.0279 0.0028 0.0003 

Barbara 
3x3 
5x5 
7x7 
9x9 

11x11 

2898.218 
2822.948 
2816.222 
2846.788 
2821.618 

286.6985
286.0339
286.8649
287.5493
287.5812

33.5393
29.2028
28.8068
28.9163
28.3155

7.9205 
3.661 
3.113 
2.9441 
2.9071 

5.5188 
1.0558 
0.5272 
0.3874 
0.3304 

5.0846 
0.7771 
0.2626 
0.1252 
0.0729 

5.046 
0.7441 
0.2335 
0.0977 
0.0467 

5.0325 
0.7401 
0.23 

0.0946 
0.044 

Real Value 2707.32 270.732 27.0732 2.7073 0.2707 0.0271 0.0027 0.0003 

Boat 
3x3 
5x5 
7x7 
9x9 

11x11 

2751.544 
2771.077 
2758.934 
2728.934 
2742.365 

277.1431
276.8141
276.0354
274.6365
274.4742

29.4363
28.0699
27.7257
27.607 
27.4036

4.6828 
3.1505 
2.8803 
2.8073 
2.7858 

2.2253 
0.6464 
0.3901 
0.3229 
0.2992 

1.984 
0.3948 
0.1426 
0.0739 
0.0495 

1.962 
0.3692 
0.1189 
0.0489 
0.0246 

1.9604 
0.3664 
0.1165 
0.0464 
0.0222 

Real Value 2133.844 213.3844 21.3384 2.1338 0.2134 0.0213 0.0021 0.0002 

Goldhill 
3x3 
5x5 
7x7 
9x9 

11x11 

2173.891 
2137.604 
2106.107 
2140.056 
2171.393 

217.3611
216.0309
215.7399
216.8333
214.9948

22.407 
21.7738
21.8678
21.5465
21.1543

2.9837 
2.3268 
2.2283 
2.1786 
2.1046 

1.0581 
0.3832 
0.2727 
0.2404 
0.2216 

0.8544 
0.1885 
0.0776 
0.046 
0.0349 

0.8344 
0.168 
0.0573 
0.0267 
0.0164 

0.8321 
0.1658 
0.0554 
0.0248 

0.0147
 
 

Fig. 4. Result of noise estimation fromthe Lena image.
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where xxS  and Sηη  represent the power spectra of the 
original image and noise, respectively. 

In most image restoration problems, the power 
spectrum information of the original image is unavailable. 
The original Wiener filter, however, provides the good 
reference for comparing a range of image restoration 
algorithms. For the experiment the original periodogram 

was used as an approximation of xxS . The MSE for PSNR 
of the restored image was calculated as 

 

 
1 1 2

0 0

1 ˆ( , ) ( , ) ,
m n

i j
MSE f i j f i j

m n

− −

= =

= −
× ∑∑  (19) 

 

Table 2. Results of image restoration using the Wiener filter with the real and the estimated noise power (peak-to-
peak signal-to-noise ratio; PSNR). 

SNR [dB] Image Blur 
Size 

Type of 
noise power 0 10 20 30 40 50 60 70 

Real 23.8846 26.9816 29.8579 32.6848 35.8671 39.4885 43.4946 47.71433x3 Estimated 23.4047 26.5427 29.3919 32.1093 34.2927 34.9086 34.9831 34.9906
Real 23.0575 25.2821 27.3222 29.4897 32.0639 35.221 39.0044 43.16265x5 Estimated 22.675 24.9369 26.9202 29.0259 31.4048 32.9659 33.2785 33.311 
Real  22.3753 24.1837 25.8135 27.6967 30.06 33.0215 36.5146 40.50067x7 Estimated 22.065 23.856 25.4184 27.2461 29.5475 31.5776 32.173 32.2479
Real  21.759 23.3895 24.899 26.6741 28.8624 31.4747 34.6416 38.339 9x9 Estimated 21.4581 23.0627 24.4949 26.2692 28.3943 30.5291 31.3855 31.5106
Real  21.1039 22.6819 24.2392 25.9698 28.0801 30.6281 33.7327 37.367 

Lena 

11x11 Estimated 20.868 22.3391 23.864 25.5693 27.6278 29.8919 31.114 31.3166
Real  22.3852 25.1677 27.9766 30.9808 34.2485 37.7331 41.5757 45.80963x3 Estimated 21.9164 24.6894 27.4516 30.3447 32.3317 32.8001 32.8573 32.8652
Real  21.5558 23.5775 25.5864 27.9729 30.7363 33.8736 37.467 41.29275x5 Estimated 21.2098 23.1896 25.1141 27.4553 29.9248 31.1618 31.3714 31.3946
Real  20.9223 22.5638 24.3757 26.5466 29.0746 31.9082 35.2263 39.17077x7 Estimated 20.6341 22.2235 23.9819 26.0993 28.4755 30.3097 30.7895 30.851 
Real  20.449 21.8927 23.4982 25.4301 27.6668 30.2777 33.4247 37.07529x9 Estimated 20.1916 21.5898 23.1314 24.9955 27.163 29.2284 30.065 30.1846
Real  20.0748 21.4623 22.9824 24.7365 26.7858 29.2677 32.2804 35.957 

Cameraman 

11x11 Estimated 19.8498 21.154 22.648 24.3485 26.3084 28.5152 29.794 30.0443
Real  22.1229 23.7675 25.514 27.8749 30.9784 34.6997 38.7562 43.05723x3 Estimated 21.8203 23.4125 25.0313 26.9306 27.7802 27.9562 27.9747 27.9797
Real  21.628 22.8247 23.8684 25.397 27.8021 31.0406 34.8908 39.32045x5 Estimated 21.4152 22.6156 23.5383 24.8888 26.5741 27.2407 27.34 27.3524
Real  21.2283 22.2636 23.1719 24.3456 26.097 28.8169 32.1934 35.99937x7 Estimated 21.0226 22.0707 22.9196 23.9757 25.446 26.5676 26.8225 26.8576
Real  20.8446 21.8374 22.7304 23.8295 25.4918 27.9728 31.213 34.937 9x9 Estimated 20.6408 21.6444 22.506 23.4944 24.9746 26.5974 27.1552 27.2373
Real  20.5045 21.5016 22.3495 23.2996 24.6436 26.761 29.7923 33.4748

Barbara 

11x11 Estimated 20.2965 21.2833 22.1469 23.0199 24.1927 25.8614 26.7647 26.9174
Real  24.0632 27.1509 30.2964 33.6468 37.273 41.2964 45.6637 50.12933x3 Estimated 23.5584 26.6655 29.8074 32.9608 35.0155 35.4524 35.5005 35.504 
Real  23.1033 25.2132 27.4282 30.0571 33.1536 36.719 40.7213 44.96595x5 Estimated 22.7406 24.7927 26.9735 29.5745 32.2789 33.6228 33.8489 33.8718
Real  22.4804 24.1381 26.1268 28.5302 31.3814 34.6481 38.3193 42.41177x7 Estimated 22.1738 23.7767 25.6666 28.0361 30.8162 33.0273 33.6076 33.6758
Real  22.0587 23.6051 25.3004 27.3715 29.9533 32.897 36.2837 40.22639x9 Estimated 21.782 23.2519 24.8722 26.8895 29.459 31.951 33.018 33.1789
Real  21.5606 22.9538 24.623 26.6416 29.0169 31.766 34.9755 38.7398

Boat 

11x11 Estimated 21.3145 22.6123 24.2556 26.1988 28.4963 31.0803 32.7101 33.0407
Real  26.7398 30.2543 33.746 37.3324 41.0328 44.8544 48.9565 53.12233x3 Estimated 26.255 29.7393 33.2195 36.7474 39.407 40.1518 40.2293 40.2368
Real  25.8456 28.4774 31.0497 33.9961 37.2998 40.8006 44.5499 48.62265x5 Estimated 25.4779 28.035 30.5548 33.4822 36.5811 38.4764 38.8736 38.9279
Real  25.1182 27.3499 29.6478 32.1777 35.0686 38.1718 41.6039 45.54687x7 Estimated 24.766 26.961 29.179 31.7038 34.5376 37.0044 37.8739 37.9951
Real  24.4436 26.45 28.5452 31.056 33.8238 36.7732 40.1019 43.819 9x9 Estimated 24.0947 26.0663 28.1484 30.5624 33.2791 35.9845 37.3805 37.6098
Real  23.8268 25.5836 27.5896 29.9754 32.5945 35.4005 38.5675 42.2403

Goldhill 

11x11 Estimated 23.5211 25.2339 27.1688 29.4912 32.0828 34.8182 36.5704 36.9412
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where m  and n  respectively represent the vertical and the 
horizontal sizes of image, and f and f̂  respectively 
represent the original and the restored images.  

Finally, The PSNR of the restored image was 
computed as 

 

 
2

10
25510 log .PSNR
MSE

⎛ ⎞
= × ⎜ ⎟

⎝ ⎠
 (20) 

 
Fig. 5 shows the PSNR values of the restored Lena 

image by the Wiener filter using both real and the 
estimated noise power. 

Table 3. Results of image restoration using the parametric Wiener filter with ( )1/2
estK

γ

ηασ= . 

SNR [dB] Image Blur 
Size 

Type of 
NSPR 0 10 20 30 40 50 60 70 

K 15.9318 21.1556 26.3624 30.8127 34.4406 38.1502 42.2265 46.69493x3 Estimated 15.5051 20.0607 24.8053 29.8786 34.261 35.7159 35.9104 35.9207
K 17.4361 21.7755 25.3427 28.0514 30.5762 33.5892 37.2297 41.58565x5 Estimated 17.1252 21.1244 24.4503 27.5974 30.3498 31.7327 31.9689 31.9935
K 18.2425 21.796 24.3586 26.35 28.4543 30.7008 34.8828 39.08847x7 Estimated 17.7177 21.4231 23.9424 26.1339 28.0718 29.2616 29.5343 29.5684
K 18.6639 21.6007 23.6512 25.4092 27.3613 29.8073 32.9877 36.867 9x9 Estimated 17.8185 21.2934 23.4131 25.172 26.7803 27.9153 28.2355 28.2727
K 18.8018 21.2345 22.9586 24.6046 26.5019 28.887 31.9835 35.8382

Lena 

11x11 Estimated 17.6566 20.8506 22.6883 24.2065 25.6444 26.8167 27.2505 27.3095
K 14.83 20.0254 24.9753 29.1312 32.7159 36.3606 40.3133 44.76933x3 Estimated 14.5677 19.3279 24.0353 28.7647 32.1538 33.031 33.1424 33.1552
K 16.2889 20.4608 23.7696 26.4517 29.1533 32.2267 35.7827 39.984 5x5 Estimated 15.9452 20.0983 23.324 26.258 28.6586 29.6334 29.7835 29.8008
K 17.0884 20.5188 23.0076 25.1551 27.4511 30.2898 33.7674 37.763 7x7 Estimated 16.3905 20.2704 22.7929 24.9561 26.8537 27.9151 28.133 28.1587
K 17.4939 20.3244 22.2864 24.1143 26.148 28.6795 31.841 35.70819x9 Estimated 16.4573 20.0455 22.1054 23.815 25.3987 26.4971 26.8065 26.8474
K 17.7483 20.1703 21.864 23.5494 25.3692 27.7015 30.7469 34.5304

Cameraman 

11x11 Estimated 16.417 19.8031 21.6284 23.1215 24.5419 25.6682 26.0991 26.1714
K 15.6221 20.2254 23.8989 26.6357 29.857 33.7201 37.7904 42.28383x3 Estimated 15.1585 19.3323 23.2726 26.3977 27.5048 27.6864 27.7061 27.7081
K 17.0036 20.596 22.9081 24.4345 26.6259 29.8918 33.7617 38.13975x5 Estimated 16.6052 20.0261 22.4073 24.2798 25.473 25.8018 25.846 25.8513
K 17.7924 20.7061 22.4257 23.616 25.1575 27.701 31.1878 34.96797x7 Estimated 17.2068 20.3588 22.1394 23.4625 24.4797 24.93 25.0101 25.023 
K 18.25 20.6639 22.0591 23.1151 24.5087 26.9901 30.3902 34.14289x9 Estimated 17.3746 20.3733 21.8667 22.932 23.8154 24.361 24.4941 24.5111
K 18.4585 20.5093 21.7195 22.6843 23.7905 25.7951 28.9341 32.7194

Barbara 

11x11 Estimated 17.3491 20.1864 21.5347 22.4634 23.2328 23.7866 23.9701 23.9954
K 15.4863 20.9674 26.437 31.2731 35.182 39.3307 43.6906 48.67873x3 Estimated 15.1861 20.1418 25.1831 30.609 34.9407 36.149 36.2982 36.3096
K 17.0373 21.5494 25.3366 28.3519 31.2236 34.2817 38.1526 42.77785x5 Estimated 16.6487 21.0308 24.6194 27.9757 30.7804 31.9434 32.124 32.1461
K 17.9772 21.7346 24.5518 26.8864 29.2883 32.326 36.1975 40.57737x7 Estimated 17.2375 21.3906 24.2071 26.6575 28.8158 30.0834 30.3524 30.381 
K 18.545 21.7533 24.0697 26.0827 28.2278 30.8949 34.2007 38.24479x9 Estimated 17.4206 21.3988 23.8148 25.8097 27.6224 28.9701 29.4022 29.4615
K 18.8042 21.496 23.4107 25.2646 27.3417 29.8694 33.028 36.8845

Boat 

11x11 Estimated 17.3771 21.0831 23.1355 24.832 26.4608 27.8568 28.4567 28.5564
K 17.292 22.7483 28.4208 33.684 38.0951 42.0161 46.0533 50.88863x3 Estimated 16.6058 21.1164 26.1581 31.871 37.8767 40.7316 41.1952 41.2456
K 18.9349 23.6931 27.9453 31.4699 34.6221 37.9221 41.6176 46.25085x5 Estimated 18.5681 22.5305 26.3129 30.295 34.341 36.966 37.5577 37.6266
K 19.921 24.0243 27.3415 30.13 32.7592 35.5151 39.0593 43.18297x7 Estimated 19.5879 23.3945 26.527 29.6315 32.547 34.6976 35.3421 35.4257
K 20.4684 23.9485 26.6062 29.0018 31.4507 34.2092 37.4553 41.30019x9 Estimated 19.9582 23.5935 26.2212 28.7512 31.1578 33.1109 33.8879 33.9952
K 20.7242 23.6782 25.8681 27.9547 30.2072 32.8143 36.0581 39.7016

Goldhill 

11x11 Estimated 19.9897 23.3871 25.6156 27.69 29.717 31.4794 32.3138 32.4576
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Similar experiments were performed using a parametric 
Wiener filter with a constant noise-to-signal power ratio 
(NSPR) as follows: 

 

 ( )1/2 ,est
xx

S
K

S
γηη

ηασ≅ =  (21) 

 

where experimentally chosen parameters α = 0.000015446 
and γ = 2 were used. The near optimal value of estK  was 
obtained by an interactive simulation for the optimal 
PSNR, where estK  is in the range 8[1.0 10 ,1.0]−× . The 
corresponding PSNR values are given in Table 3. Other 
experimental results using the manually selected constant 
for the NSPR are given in Table 4. 

Table 4. Results of image restoration using the ForWaRD algorithm in PSNR. 

SNR [dB] Image Blur 
Size 

Type of 
noise power 0 10 20 30 40 50 60 70 

Real  12.0817 23.6813 29.2859 31.9092 34.4559 36.8064 39.6032 43.32973x3 Estimated 12.0868 23.6758 29.3248 32.1796 34.144 34.6094 34.6619 34.668 
Real  11.7382 22.4076 26.9339 29.2023 31.5026 33.9945 36.6331 39.39125x5 Estimated 11.8118 22.3772 26.9357 29.2575 31.5324 32.6363 32.8197 32.8464
Real  11.4096 21.3742 25.424 27.5061 29.7853 32.403 35.0823 37.83217x7 Estimated 11.3242 21.3668 25.4212 27.5169 29.7972 31.4571 31.8569 31.9074
Real  11.1004 20.4556 24.3463 26.4596 28.6033 31.0552 33.6474 36.41119x9 Estimated 11.1417 20.4478 24.3411 26.4575 28.616 30.551 31.2091 31.3036
Real  10.8212 19.6835 23.4171 25.5444 27.7366 30.2433 32.9371 35.797 

Lena 

11x11 Estimated 10.8649 19.6606 23.4118 25.5407 27.7343 30.0629 31.2289 31.4529
Real  11.0517 22.4179 27.873 30.6476 33.3845 36.1039 39.1418 42.88193x3 Estimated 10.9414 22.3433 27.8843 30.6871 32.2059 32.5164 32.554 32.556 
Real  10.7765 21.0941 25.4287 28.0118 30.4362 32.9708 35.8083 38.86585x5 Estimated 10.6758 21.0289 25.419 28.0188 30.3005 31.3138 31.4702 31.4753
Real  10.561 20.291 24.1672 26.5228 28.9035 31.4477 34.1255 37.11747x7 Estimated 10.4758 20.2319 24.1577 26.524 28.8491 30.433 30.8025 30.8504
Real  10.3691 19.5755 23.0402 25.3061 27.5775 30.0886 32.8474 35.723 9x9 Estimated 10.3303 19.5142 23.0302 25.2988 27.5672 29.5916 30.3182 30.4176
Real  10.2108 19.0828 22.4008 24.5842 26.7784 29.2419 31.9406 34.9117

Cameraman 

11x11 Estimated 10.2051 19.0236 22.3881 24.5751 26.7639 29.0231 30.1878 30.3834
Real  11.0449 21.2378 24.7526 26.9164 30.1828 33.8312 37.5026 41.95743x3 Estimated 10.8148 21.087 24.6716 26.0643 26.5323 26.6119 26.6176 26.6209
Real  10.7637 20.5683 23.4534 24.5723 26.8274 30.3315 34.0291 37.81155x5 Estimated 10.5676 20.4787 23.4474 24.4801 25.4027 25.7003 25.735 25.7418
Real  10.4977 19.9653 22.8228 23.8457 25.2706 27.9346 31.623 35.33347x7 Estimated 10.3799 19.8755 22.8167 23.827 24.9221 25.5157 25.6219 25.6313
Real  10.2513 19.4173 22.3375 23.3361 24.6415 27.048 30.586 34.28849x9 Estimated 10.1233 19.3608 22.3348 23.3324 24.4798 25.4812 25.758 25.7993
Real  10.0229 18.9017 21.8941 22.9549 23.9286 25.8029 29.1708 32.9918

Barbara 

11x11 Estimated 9.9002 18.8099 21.8931 22.954 23.8844 24.8263 25.1891 25.2358
Real  10.3301 22.6785 29.4999 32.4216 35.2734 37.9196 41.0248 44.868 3x3 Estimated 10.0789 22.5 29.5178 32.6431 34.7408 35.1895 35.2668 35.2639
Real  10.0144 21.4427 26.8712 29.4584 32.0061 34.7688 37.731 40.74025x5 Estimated 9.7854 21.227 26.8496 29.4914 32.0153 33.3866 33.6243 33.6423
Real  9.7684 20.6427 25.465 27.9147 30.4422 33.1262 35.8268 38.90867x7 Estimated 9.6516 20.5446 25.4509 27.9136 30.4533 32.4932 33.0274 33.0795
Real  9.553 20.0144 24.6253 26.9061 29.1889 31.7675 34.4731 37.347 9x9 Estimated 9.5524 20.0018 24.6092 26.9015 29.2019 31.5362 32.5181 32.662 
Real  9.3585 19.4501 23.7401 26.0097 28.2808 30.8416 33.5767 36.5561

Boat 

11x11 Estimated 9.2723 19.3932 23.7187 25.9944 28.2818 30.7293 32.0985 32.3484
Real  13.1989 25.4969 32.3482 35.2669 37.8552 40.285 43.2054 46.86223x3 Estimated 13.2117 25.3896 32.3882 35.6726 38.1347 38.8696 38.9647 38.9783
Real  12.9351 24.466 30.034 32.7458 35.0247 37.3128 39.9765 42.70685x5 Estimated 12.8569 24.4952 30.0358 32.8443 35.4271 36.8648 37.1323 37.1505
Real  12.6919 23.5989 28.7017 31.1889 33.3095 35.7235 38.2176 40.99627x7 Estimated 12.6546 23.6454 28.7035 31.2045 33.5262 35.3785 35.8772 35.9481
Real  12.4738 22.8065 27.493 30.0713 32.2931 34.6044 36.9353 39.57369x9 Estimated 12.4534 22.8189 27.4957 30.0712 32.3863 34.669 35.5987 35.7388
Real  12.2787 22.1495 26.4667 29.0588 31.3209 33.6124 35.9986 38.7593

Goldhill 

11x11 Estimated 12.2625 22.1802 26.4651 29.0606 31.357 33.8235 35.3351 35.623 
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In addition to the original and the parametric Wiener 
filter, this study tested Fourier-Wavelet Regularized 
Deconvolution (ForWaRD) algorithm, which effectively 
combines and balances scalar Fourier shrinkage and 
wavelet shrinkage [13]. Table 5 summarizes the restored 
results using the ForWaRD algorithm by comparing the 
PSNRs with the real and estimated noise power. The 
ForWaRD algorithm was tested on two conditions, one 
with real noise power and the other with an estimated 

noise power, as shown in Table 5. For images with high 
level noise, such as SNR 0 to 40dB, the ForWaRD 
algorithm gives similar restoration performance using both 
the real and estimated noise power. 

Fig. 7 shows the restoration results using the ForWaRD 
algorithm with real and estimated noise power for the Lena 
image. 

Fig. 8 shows the restored Lena images for the 7 7×  
uniform blur and 20dB additive noise.  

From Fig. 8(c)-(f) exhibit some artifacts due to 
incomplete reconstruction of the entire frequency 
components, while the ForWaRD algorithm can reduce 
such artifacts, as shown in Fig. 8(g) and (h). In addition, 
there are no differences between the results using the 
original and estimated noise power. 

Fig. 5. PSNR values of the Wiener filter versus various 
noise levels. 

 
 

Fig. 6. PSNR values of the restored results using the
parametric Wiener filter for the Lena image versus
various levels of noise. 

 
 

Fig. 7. PSNR values of the restored results using the
ForWaRD algorithm for Lena image versus various
levels of noise. 

 

(a) 
 

(b) 
 

(c) (d) 

(e) 
 

(f) 
 

(g) (h) 

Fig. 8. Comparison of the restored images (a) original 
image, (b) observed image degraded by two 
dimensional 7 7× uniform blur with 20dB whith 
Gaussian noise, (c) restored image using the original 
Wiener filter with real noise power, (d) restored image 
using the original Wiener filter with the estimated noise 
power, (e) restored image using the parametric Wiener 
filter with manually chosen constant NSPR shown in 
Table 4, (f) restored image using the parametric Wiener 
filter with the estimated noise power, (g) restored 
image using the ForWaRD algorithm with real noise 
power, (h) restored image using the ForWaRD 
algorithm with the estimated noise power. 

 
 

(a) 
 

(b) 
 

(c) (d) 

(e) 
 

(f) 
 

(g) (h) 

Fig. 9. Magnified images of Fig. 8. 
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5. Conclusion 

This paper proposed a novel noise power estimation 
algorithm based on the DWT-based minimum statistics. 
The estimated noise can be used for any parametric image 
restoration filter. Based on experimental results, the 
accuracy of the proposed estimation method was more 
than 90% with a relatively high noise level of SNR. As the 
SNR was increased to more than 50dB, the estimation 
accuracy decreased because the total number of noise 
samples approaches zero. Such inaccuracy, however, is not 
a serious problem because the final restored results 
maintain sufficiently high quality. The proposed algorithm 
can estimate the noise power far more efficiently than any 
existing algorithm. In addition, there were almost no 
differences between the restored results using real and 
estimated noise power. Because the proposed algorithm 
estimated noise power in the DWT domain, it can fully 
utilize multiple resolution characteristics of the noise 
distribution, and as a result, its estimation results can be 
applied successfully to any kind of parametric image 
restoration filters. 
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