• Title/Summary/Keyword: Input frequency

Search Result 3,693, Processing Time 0.045 seconds

Input Impedance of the Stcked Microstrip Patch Antenna Using the the cavity Model (캐버티 마들을 이용한 적층 마이크로스트립 안테나의 입력 임피던스)

  • 임기남;이경우이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.339-342
    • /
    • 1998
  • The stacked microstrip patch antenna is modeled by a simple cavity model. Using this model, the input impedance of the stacked microstrip patch antenna fed by a coaxial probe is expressed as a function of antenna paprameters and frequency. We calculate the input impedance of the stacked microstrip patch antenna for the variation of frequency.

  • PDF

Design and Sensitivity Analysis of Input Shaping Filter in the Z-domain (Z-영역에서 입력성형기의 설계와 민감도 해석)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1854-1862
    • /
    • 2000
  • Input shaping method is to convolute input shaper, which is sequence of impulses, with reference input command not to excite the natural frequency of system. To reduce residual vibration for the ch ange of frequency, the number of impulses should be increased. Until now, amplitudes and time interval of those has been searched from the derivative of residual vibration. However, if time interval of impulses is fixed as the half of vibration period of system, input shaper H(z) in z-domain becomes (I-pz-1)n/K in which increasing n is the mean that robustness for change of parameter is improved. Also, design of many types of input shapers in z-domain is very easy because sensitivity curve is displayed with $\mid$H(z)zn$\mid$$\times$100. In the z-domain, EI(Extra-Insensitive) input shaper could be designed without solving nonlinear simultaneous equations as design in continuous time domain. In addition to, the design possibility of input shaper for a damped system was shown.

Convergence Characteristics of the Frequency Response Functions of Non-Linear Systems Expressed in Terms of the Volterra Series (Volterra급수로 나타낸 비선형시스템 주파수응답함수의 수렴특성)

  • ;Tomlinson, G. R.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1901-1906
    • /
    • 1995
  • The frequency response functions of systems incorporating a non-linear cubic stiffness subject to sinusoidal excitation are derived using the Volterra series and the convergence characteristics investigated. It is shown that the series representation of the frequency response functions converges only when the sinewave input amplitude is within a certain range. Within the range of convergence the frequency response function based on the Volterra series approaches the analytical one as more higher order frequency response function terms are included. Proposed is a criterion for the studies systems to predict approximately the range of sinewave input amplitude for which the series representation of the frequency response functions converges.

Design of a Sub-micron Locking Time Integer-N PLL Using a Delay Locked-Loop (지연고정루프를 이용한 $1{\mu}s$ 아래의 위상고정시간을 가지는 Integer-N 방식의 위상고정루프 설계)

  • Choi, Hyek-Hwan;Kwon, Tae-Ha
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2378-2384
    • /
    • 2009
  • A novel phase-locked loop(PLL) architecture of sub-micron locking time has been proposed. Input frequency is multiplied by using a delay-locked loop(DLL). The input frequency of a PLL is multiplied while the PLL is out of lock. The multiplied input frequency makes the PLL having a wider loop bandwidth. It has been simulated with a $0.18{\mu}m$ 1.8V CMOS process. The simulated locking time is $0.9{\mu}s$ at 162.5MHz and 2.6GHz, input and output frequency, respectively.

Synthesis of Silver Nano-particles by the Solution Plasma Sputtering Method (유체 플라즈마 방식을 사용한 은 나노파티클의 합성)

  • Yoo, Seung-cheol;Shin, Hong-Jik;Choi, Won Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.216-218
    • /
    • 2016
  • In this study, we used not chemical and physical synthesis method but the solution plasma sputtering method in the synthesis of silver nano-particles. Synthesis of all the silver nano-particles was conducted for 1hour in 360 ml of distilled water and characteristics of changing the input voltage and frequency of the synthesised silver nano-particles by using the solution plasma sputtering method were analyzed through FE-SEM(Field Emission-Scanning Electron Microscope). We changed the input voltage from 8 kV to 10 kV in steps of 1 kV, input frequency from 20 kHz to 30 kHz in steps of 5 kHz in the solution plasma reactor with the advanced device which can control the DC voltage and frequency. We confirmed that the size of silver nano-particles were larger according to the change of the input voltage and frequency.

Channel Selective Relay-based Multiple-Input SC-FDMA/OFDMA Transmission System (채널 선택형 릴레이 기반 다중 입력 SC-FDMA/OFDMA 전송 시스템)

  • Won, Hui-Chul;Kim, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.1-9
    • /
    • 2009
  • Relay-assisted multiple input technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose channel selective relay-based multiple input transmission system. In the proposed system, single carrier frequency division multiple access (SC-FDMA) and orthogonal frequency division multiple access (OFDMA) are adopted for uplink and downlink transmissions, respectively. The performance of relay-based system can be improved by using the subcarriers selectively based on the channel condition between relay station (RS) and mobile station, or between RS and base station. Simulation results show that the proposed relay-based system considerably outperforms the conventional relay-based system.

Implementation of TFDR system with PXI type instruments for detection and estimation of the fault on the coaxial cable (동축 케이블의 결함 측정에 있어서 PXI 타입의 계측기를 이용한 개선된 TFDR 시스템의 구현)

  • Choe, Deok-Seon;Park, Jin-Bae;Yun, Tae-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.91-94
    • /
    • 2003
  • In this paper, we achieve implementation of a Time-Frequency Domain Reflectometry(TFDR) system through comparatively low performance(100MS/s) PCI extensions for Instrumentation(PXI). The TFDR is the general methodology of Time Domain Reflectometry(TDR) and Frequency Domain Reflectometry(FDR). This methodology is robust in Gaussian noises, because the fixed frequency bandwidth is used. Moreover, the methodology can get more information of the fault by using the normalized time-frequency cross correlation function. The Arbitrary Waveform Generator(AWG) module generates the input signal, and the digital oscilloscope module acquires the input and reflected signals, while PXI controller module performs the control of the total PXI modules and execution of the main algorithm. The maximum range of measurement and the blind spot are calculated according ta variations of time duration and frequency bandwidth. On the basis of above calculations, the algorithm and the design of input signals used in the TFDR system are verified by real experiments. The correlation function is added to the TDR methodology for reduction of the blind spot in the TFDR system.

  • PDF

An Adaptive-Bandwidth Referenceless CDR with Small-area Coarse and Fine Frequency Detectors

  • Kwon, Hye-Jung;Lim, Ji-Hoon;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.404-416
    • /
    • 2015
  • Small-area, low-power coarse and fine frequency detectors (FDs) are proposed for an adaptive bandwidth referenceless CDR with a wide range of input data rate. The coarse FD implemented with two flip-flops eliminates harmonic locking as long as the initial frequency of the CDR is lower than the target frequency. The fine FD samples the incoming input data by using half-rate four phase clocks, while the conventional rotational FD samples the full-rate clock signal by the incoming input data. The fine FD uses only a half number of flip-flops compared to the rotational FD by sharing the sampling and retiming circuitry with PLL. The proposed CDR chip in a 65-nm CMOS process satisfies the jitter tolerance specifications of both USB 3.0 and USB 3.1. The proposed CDR works in the range of input data rate; 2 Gb/s ~ 8 Gb/s at 1.2 V, 4 Gb/s ~ 11 Gb/s at 1.5 V. It consumes 26 mW at 5 Gb/s and 1.2 V, and 41 mW at 10 Gb/s and 1.5 V. The measured phase noise was -97.76 dBc/Hz at the 1 MHz frequency offset from the center frequency of 2.5 GHz. The measured rms jitter was 5.0 ps at 5 Gb/s and 4.5 ps at 10 Gb/s.

Digital signal processing of automatic color control in VCR (비디오 레코더의 색신호 자동 조절 장치의 디지탈 신호처리)

  • 김동하;이정숙;강경용;권오일;이태원
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.119-127
    • /
    • 1996
  • The proposed method uses a signal of the smae frequency as the input modulating carrier frequency and of a different phase. This signal is generated in the digital automatic frequency control part to decide the input color demodulated signal. And the phase error from the burst signal is calculated. The calculated phase error is utilized to rmove the phase error contained inthe demodulated color signal. In this paper, digital signal processing of automatic color control is proposed for VCR system campatible with both NTSC and PAL TV systems.

  • PDF

A Proposal on Fast Pull-in PLL with Clock Count Type Frequency Detector

  • Fujimoto, Kuniaki;Sasaki, Hirofumi;Yahara, Mitsutoshi;Murshed, Mohammad.M.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.187-190
    • /
    • 2000
  • In this paper, we proposed a PLL with the clock count type frequency detector, in which the very fast pull-in time can be realized by resetting the VCO at the rising of input signal after charging the capacitor of loop filter with the voltage corresponding to the frequency of the input signal.

  • PDF