• Title/Summary/Keyword: Input coupled

Search Result 503, Processing Time 0.023 seconds

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

FDTD Analysis of the Mutual Coupling Between Closely Placed IFAs (근접한 IFA 사이의 신호결합에 대한 FDTD 해석)

  • Ji, Ki-Man;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • Because of space limitations, interferences between antennas of the KSLV-I communication systems occur and their effects become worse during all sorts of tests such as the flight test using a light plane. In this paper, coupled signal magnitude is calculated using the FDTD method. The theory of the FDTD, absorbing boundary condition, source input technique, and post processing of data are explained. The calculated coupling factor between two IFAs, which have 2 GHz resonance frequency and placed 5 cm apart, is -12.7 dB. Applied coupling calculation method can be effectively used for KSLV-I performance analysis, subsystem design, antenna arrangement, and communication link budget for the next space launch vehicle.

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

Investigation of Spatial Distribution of Plasma Density between the Electrode and Lateral Wall of Narrow-gap CCP Source (좁은 간격 CCP 전원의 전극과 측면 벽 사이 플라즈마 분포)

  • Choi, Myung-Sun;Jang, Yunchang;Lee, Seok-Hwan;Kim, Gon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.1-5
    • /
    • 2014
  • The plasma density distribution in between the electrode and lateral wall of a narrow gap CCP was investigated. The plasma density distribution was obtained using single Langmuir probe, having two peaks of density distribution at the center of electrode and at the peripheral area of electrodes. The plasma density distribution was compared with the RF fluctuation of plasma potential taken from capacitive probe. Ionization reactions obtained from numerical analysis using CFD-$ACE^+$ fluid model based code. The peaks in two region for plasma density and voltage fluctuation have similar spatial distribution according to input power. It was found that plasma density distribution between the electrode and the lateral wall is closely related with the local ionization.

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Hwa-Woon Lee;Yoo
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1992
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorolog ital processecs . In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification Process through observation is emphasized.

  • PDF

A Multistage In-flight Alignment with No Initial Attitude References for Strapdown Inertial Navigation Systems

  • Hong, WoonSeon;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.565-573
    • /
    • 2017
  • This paper presents a multistage in-flight alignment (MIFA) method for a strapdown inertial navigation system (SDINS) suitable for moving vehicles with no initial attitude references. A SDINS mounted on a moving vehicle frequently loses attitude information for many reasons, and it makes solving navigation equations impossible because the true motion is coupled with an undefined vehicle attitude. To determine the attitude in such a situation, MIFA consists of three stages: a coarse horizontal attitude, coarse heading, and fine attitude with adaptive Kalman navigation filter (AKNF) in order. In the coarse horizontal alignment, the pitch and roll are coarsely estimated from the second order damping loop with an input of acceleration differences between the SDINS and GPS. To enhance estimation accuracy, the acceleration is smoothed by a scalar filter to reflect the true dynamics of a vehicle, and the effects of the scalar filter gains are analyzed. Then the coarse heading is determined from the GPS tracking angle and yaw increment of the SDINS. The attitude from these two stages is fed back to the initial values of the AKNF. To reduce the estimated bias errors of inertial sensors, special emphasis is given to the timing synchronization effects for the measurement of AKNF. With various real flight tests using an UH60 helicopter, it is proved that MIFA provides a dramatic position error improvement compared to the conventional gyro compass alignment.

The Dry Etching of TiN Thin Films Using Inductively Coupled CF4/Ar Plasma

  • Woo, Jong-Chang;Choi, Chang-Auck;Joo, Young-Hee;Kim, Han-Soo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.67-70
    • /
    • 2013
  • In this study, we changed the input parameters (gas mixing ratio, RF power, DC bias voltage, and process pressure), and then monitored the effect on TiN etch rate and selectivity with $SiO_2$. When the RF power, DC-bias voltage, and process pressure were fixed at 700 W, - 150 V, and 15 mTorr, the etch rate of TiN increased with increasing $CF_4$ content from 0 to 20 % in $CF_4$/Ar plasma. The TiN etch rate reached maximum at 20% $CF_4$ addition. As RF power, DC bias voltage, and process pressure increased, all ranges of etch rates for TiN thin films showed increasing trends. The analysis of x-ray photoelectron spectroscopy (XPS) was carried out to investigate the chemical reactions between the surfaces of TiN and etch species. Based on experimental data, ion-assisted chemical etching was proposed as the main etch mechanism for TiN thin films in $CF_4$/Ar plasma.

Adaptive Feedback Linearization Technique of PM Synchronous Motor With Specified Output Dynamic Performance (규정된 동특성을 갖는 영구 자석형 동기 전동기의 적응 궤환 선형화 제어 기법)

  • Kim, Kyeong-Hwa;Baik, In-Cheol;Joo, Hyeong-Gil;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.334-336
    • /
    • 1995
  • An adaptive feedback linearization technique of a PM synchronous motor with specified output dynamic performance is proposed. The adaptive parameter estimation is achieved by a model reference adaptive technique where the stator resistance and flux linkage can be estimated with the current dynamic model and the state observer. Using these estimated parameters, the linearizing control inputs are calculated and a nonlinear coupled model of a PM synchronous motor is input-output linearized. The resultant model has the load torque disturbance. To get ti perfect decoupled model, the load torque is estimated. The adaptation laws are derived by the hyperstability theory and positivity concept. The robustness of the proposed control scheme will be proven through the computer simulations.

  • PDF

A Study of the Silicon Mold Surface Treatment Using CHF3 Plasma for Nano Imprint Lithography (나노임프린트 리소그래피 적용을 위한 CHF3 플라즈마를 이용한 실리콘 몰드 표면 처리 특성)

  • Kim, Young-Keun;Kim, Jae-Hyun;You, Ban-Seok;Jang, Ji-Su;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.790-793
    • /
    • 2011
  • In this study, the surface modification for a silicon(Si) mold using $CHF_3$ inductively coupled plasma(ICP). The conditions under that plasma was treated a input ICP power 600 W, an operating gas pressure of 10 mTorr and plasma exposure time of 30 sec. The Si mold surface became hydrophobic after plasma treatment in order to $CF_x$(X= 1,2,3) polymer. However, as the de-molding process repeated, it was investigated that the contact angle of Si surface was decreased. So, we attempted to investigate the degradation mechanism of the accurate pattern transfer with increasing the count of the de-molding process using scanning electron microscope (SEM), contact angle, and x-ray photoelectron spectroscopy (XPS) analysis of Si mold surface.

Development of Link Cost Function using Neural Network Concept in Sensor Network

  • Lim, Yu-Jin;Kang, Sang-Gil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.141-156
    • /
    • 2011
  • In this paper we develop a link cost function for data delivery in sensor network. Usually most conventional methods determine the optimal coefficients in the cost function without considering the surrounding environment of the node such as the wireless propagation environment or the topological environment. Due to this reason, there are limitations to improve the quality of data delivery such as data delivery ratio and delay of data delivery. To solve this problem, we derive a new cost function using the concept of Partially Connected Neural Network (PCNN) which is modeled according to the input types whether inputs are correlated or uncorrelated. The correlated inputs are connected to the hidden layer of the PCNN in a coupled fashion but the uncoupled inputs are in an uncoupled fashion. We also propose the training technique for finding an optimal weight vector in the link cost function. The link cost function is trained to the direction that the packet transmission success ratio of each node maximizes. In the experimental section, we show that our method outperforms other conventional methods in terms of the quality of data delivery and the energy efficiency.