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Abstract

This paper presents a multistage in-flight alignment (MIFA) method for a strapdown inertial navigation system (SDINS) 

suitable for moving vehicles with no initial attitude references. A SDINS mounted on a moving vehicle frequently loses attitude 

information for many reasons, and it makes solving navigation equations impossible because the true motion is coupled with 

an undefined vehicle attitude. To determine the attitude in such a situation, MIFA consists of three stages: a coarse horizontal 

attitude, coarse heading, and fine attitude with adaptive Kalman navigation filter (AKNF) in order. In the coarse horizontal 

alignment, the pitch and roll are coarsely estimated from the second order damping loop with an input of acceleration 

differences between the SDINS and GPS. To enhance estimation accuracy, the acceleration is smoothed by a scalar filter 

to reflect the true dynamics of a vehicle, and the effects of the scalar filter gains are analyzed. Then the coarse heading is 

determined from the GPS tracking angle and yaw increment of the SDINS. The attitude from these two stages is fed back to 

the initial values of the AKNF. To reduce the estimated bias errors of inertial sensors, special emphasis is given to the timing 

synchronization effects for the measurement of AKNF.

With various real flight tests using an UH60 helicopter, it is proved that MIFA provides a dramatic position error 

improvement compared to the conventional gyro compass alignment.
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1. Introduction

A strapdown inertial navigation system (SDINS) performs 

alignment to estimate the initial attitude of vehicles before 

navigation. Gyro compass alignment (GCA) for stationary vehicles 

or in-flight alignment (IFA) for moving vehicles is common for 

this. For a tactical grade INS - position error of 0.8-1.0nm/hr- it 

takes 4 to 15 minutes to complete the GCA depending on the gyro 

performance, and 4-10 minutes to complete IFA depending on 

the maneuvering trajectory of the vehicles.

For every case of IFA, the Kalman navigation filter (KNF) 

which has various structures to enhance the estimated 

attitude accuracy is essential. The observability analysis 

that discriminates the observable states of the SDINS error 

model is also important because the maneuvering pattern 

of a vehicle should be determined from the analysis results. 

A piece-wise constant system assumption was introduced in 

[1, 2] for observability analysis of an INS error model during 

IFA. The nonlinear error model of the INS was simplified as 

a piece-wise constant system and analyzed according to its 

dominant trajectory segments. A carrier maneuver such as an 

S-turn to increase the observability was investigated in [3]-[5].

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	     	 *	 Ph. D Student, Principal Researcher
		  **	 Professor, Corresponding author: chanpark@snu.ac.kr



DOI: http://dx.doi.org/10.5139/IJASS.2017.18.3.565 566

Int’l J. of Aeronautical & Space Sci. 18(3), 565–573 (2017)

When configured with a GPS or up-linked radar system 

as a measurement reference, the KNF much improves the 

performance, offering more precise initial attitude. Many 

studies on the IFA focused on KNF improvement under 

large initial attitude errors, especially heading errors. The 

Attitude Dilution of Precision (ADOP) metric was derived 

and augmented to improve IFA performance of a theater 

defense missile that has a large initial attitude error in [6]. 

For a low grade SDINS with a large initial heading error, the 

attitude error model was divided into two parts, horizontal 

and heading errors, and the large heading error was modeled 

as a perturbed sinusoidal term in [7]. This was effective to 

coarsely estimate a heading with a large error of as much 

as 40 degrees. The authors in [8] introduced an innovation-

covariance estimation-based adaptive extended Kalman filter 

(AEKF) under a priori incorrect knowledge of measurement 

noise. It directly applied the covariance of innovation into 

gain instead of adjusting the measurement covariance and 

proved considerable performance enhancement under an 

initial large heading error and noisy GPS measurement.

Although impressive approaches under large initial 

attitude errors were introduced in the above-mentioned 

studies, we still determine the rough initial attitude no 

matter how large the attitude error is. It is impossible to 

assume the initial attitude for the moving vehicles. The initial 

attitude error can cause the divergence of AKNF because it 

sometimes exceeds the linearized limit of nonlinear error 

models. 

This paper presents the multistage in-flight alignment 

(MIFA) for the moving vehicles, which is composed of a coarse 

horizontal alignment, coarse heading alignment, and fine 

alignment with an adaptive Kalman navigation filter (AKNF).

At the first stage the second order damping loop 

formulates the acceleration differences between the SDINS 

and GPS as damping coefficients to estimate the horizontal 

attitude roll and pitch. And the dedicated scalar filter is 

introduced to shape the fluctuating GPS acceleration. At 

the second stage the coarse heading alignment which uses 

the SDINS yaw increment and GPS tracking angle as inputs 

determines the coarse heading. At the third stage the AKNF 

estimates the fine attitude of moving vehicles. With the 

adaptive innovation process for the measurement noise, the 

AKNF converges faster than the usual KNF and guarantees 

stability against uncertain large initial attitude errors. 

Because there is no attitude reference during MIFA in real 

tests, the estimated attitude accuracy cannot be investigated 

directly from the attitude errors. The accuracy for MIFA can 

be investigated by the position error of a pure navigation 

because the estimated heading error is nearly proportional 

to the position error. Various real tests with a UH60 helicopter 

equipped with SDINS and GPS verifies that the proposed 

MIFA improves the position error by 53.75% compared to the 

gyro compass alignment.

2. Multistage In-flight  Alignment

The multistage in-flight alignment (MIFA) presented in 
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attitude, such as an abrupt power cycle, no gyro compass alignment, or recovery from the malfunction 

of SDINS on moving air vehicles. In these cases it is hard to estimate the precise attitude from the 

KNF because there is no initial attitude reference. The proposed MIFA to solve these problems 

consists of the coarse horizontal alignment and coarse heading alignment for the initial attitude and 

the AKNF for the fine attitude estimation. The only constraint for this study is nearly straight 

maneuvering to determine the initial attitude which takes maximum of 60 seconds at the beginning of 

MIFA. The 1st stage takes 20 seconds for the estimation of the coarse horizontal attitude and the 2nd 

stage takes 40 seconds for estimation of the coarse heading. All the stages of MIFA are depicted in 
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this study is for the case of no initial attitude, such as an 

abrupt power cycle, no gyro compass alignment, or recovery 

from the malfunction of SDINS on moving air vehicles. In 

these cases it is hard to estimate the precise attitude from 

the KNF because there is no initial attitude reference. The 

proposed MIFA to solve these problems consists of the 

coarse horizontal alignment and coarse heading alignment 

for the initial attitude and the AKNF for the fine attitude 

estimation. The only constraint for this study is nearly 

straight maneuvering to determine the initial attitude which 

takes maximum of 60 seconds at the beginning of MIFA. The 

1st stage takes 20 seconds for the estimation of the coarse 

horizontal attitude and the 2nd stage takes 40 seconds for 

estimation of the coarse heading. All the stages of MIFA are 

depicted in Fig. 1.

In the first two stages, the alignment concept is similar to 

the gyro compass alignment on the ground except that the 

velocity of a SDINS is not stationary but nearly constant, 

that is, the acceleration is almost zero. In the first stage 

in Fig. 1, the alignment is performed with the input of the 

acceleration differences between the SDINS and GPS. The 

GPS acceleration derived from the velocity difference is too 

fluctuant for the damping loop input. A scalar filter is used 

to shape the acceleration because the major dynamics of the 

SDINS must be distinguished from the fluctuating noises. 

If the acceleration is not shaped properly, it causes large 

initial attitude errors that degrade the SDINS performance. 

In the second stage the coarse heading alignment which 

substitutes a yaw increment and GPS tracking angle as 

damping loop input estimates the coarse heading of the 

SDINS. The estimated attitude in the first two stages act as 

initial attitude of the third stage AKNF. In the third stage the 

AKNF which shapes the measurement covariance in real 

time estimates the error state vector. It converges rapidly 

because the measurement residuals are directly reflected 

into the error state estimation. 

The time synchronization error between the SDINS and 

GPS causes the estimation errors which degrade severely 

the SDINS performance. It causes the estimated attitude 

error in the 1st and 2nd stages, so that is why we need a 

nearly constant velocity. It also causes the accelerometer 

bias estimation errors to the on-going direction for the 

AKNF, increasing the position errors toward that directional 

vector. The effect of timing mismatch for KNF was analyzed 

for the constant and circular velocity trajectories in [9]. The 

accelerometer bias and attitude errors according to trajectory 

segments were simulated and it proved the time mismatch 

dominantly affects the accelerometer biases. The influence 

of time synchronization error for MIFA is discussed in the 

following section. 

3. Coarse Horizontal and Heading Alignment

In the first stage the vehicle moves straight with a constant 

speed to maintain nearly zero acceleration and the minimum 

time synchronization error between the SDINS and GPS. 

The acceleration difference between the SDINS and GPS is 

used as a control input to estimate the attitude. It is similar 

to gyro compassing on the ground except that the specific 

force of the acceleration difference is projected onto the local 

level frame. The observability at this stage is the same as the 

ground alignment because the stationary condition and zero 

acceleration have the same observability. The block diagram of 

a coarse horizontal alignment for a single channel is in Fig. 2.

The alignment equation in the navigation frame can be 

represented as
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accelerometer biases, g gravity, GPS
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Substituting Eq. 2 into Eq. 1, the horizontal alignment equation can be expressed as a second order 

damping loop. 
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Where 2
0 02 , bK K g   . 

The settling time of the damping loop is chosen by bK  and K . Because the vehicle maneuvers 

straight with a constant speed, the variation of the horizontal attitude is small enough, therefore the 

effect of the time mismatch that causes the horizontal attitude error is minimized.  

The GPS acceleration derived from the velocity differences is too fluctuant to substitute for the 

damping loop input and can cause the large attitude error if it is not shaped properly. The scalar filter 

for the 1st and 2nd stage of MIFA is presented to prevent an excessive fluctuation of GPS velocities. 

The scalar filter equations are as follows: 
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Where ,ˆk gpsv is the smoothed GPS velocity, kk is the filter gain, ,k gpsz is the velocity 

measurement, kp  is the error covariance, q is the process noise, and r is the measurement noise.  

Because the process noise q attenuates the velocity, it is very important to choose a proper q to 

reflect the true vehicle dynamics. If q is too small, the acceleration variation of a vehicle is not 

distinguishable, so the horizontal attitude does not match the real vehicle dynamics. To investigate the 

effect of q the sensitivities on the performance corresponding to different q are simulated with the 

real flight data acquired from the UH-60 helicopter for its full operation sequences. The filter 

sensitivity has been defined the ratio of the filter output w.r.t the reference input for the analysis 

purpose. The scalar filter outputs are shown in Fig. 3. The filter sensitivity for 1q   is 0.9888, for 
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distinguishable, so the horizontal attitude does not match the real vehicle dynamics. To investigate the 

effect of q the sensitivities on the performance corresponding to different q are simulated with the 

real flight data acquired from the UH-60 helicopter for its full operation sequences. The filter 

sensitivity has been defined the ratio of the filter output w.r.t the reference input for the analysis 

purpose. The scalar filter outputs are shown in Fig. 3. The filter sensitivity for 1q   is 0.9888, for 
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Where ,ˆk gpsv is the smoothed GPS velocity, kk is the filter gain, ,k gpsz is the velocity 

measurement, kp  is the error covariance, q is the process noise, and r is the measurement noise.  

Because the process noise q attenuates the velocity, it is very important to choose a proper q to 

reflect the true vehicle dynamics. If q is too small, the acceleration variation of a vehicle is not 

distinguishable, so the horizontal attitude does not match the real vehicle dynamics. To investigate the 

effect of q the sensitivities on the performance corresponding to different q are simulated with the 

real flight data acquired from the UH-60 helicopter for its full operation sequences. The filter 

sensitivity has been defined the ratio of the filter output w.r.t the reference input for the analysis 

purpose. The scalar filter outputs are shown in Fig. 3. The filter sensitivity for 1q   is 0.9888, for 
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 is the smoothed GPS velocity, kk is the 

filter gain, Zk,gps is the velocity measurement, pk is the error 

covariance, q is the process noise, and r is the measurement 

noise. 

Because the process noise q attenuates the velocity, it is 

very important to choose a proper q to reflect the true vehicle 

dynamics. If q is too small, the acceleration variation of a 

vehicle is not distinguishable, so the horizontal attitude does 

not match the real vehicle dynamics. To investigate the effect 

of q the sensitivities on the performance corresponding to 

different q are simulated with the real flight data acquired 

from the UH-60 helicopter for its full operation sequences. 

The filter sensitivity has been defined the ratio of the filter 

output w.r.t the reference input for the analysis purpose. The 

scalar filter outputs are shown in Fig. 3. The filter sensitivity 

for q=1 is 0.9888, for q=10-1 0.9644, q=10-2 0.9197 and q=10-5 

0.8719. For q=1 the response keeps track of the reference GPS 

velocity but is too fluctuant to use as a horizontal attitude 

damping loop. On the other hand, for q=10-5  the output is 

over smoothed, which has not reflected the true helicopter 

dynamics and caused the large horizontal attitude error. 

The estimated horizontal pitch angles for the different q are 

shown in Fig. 4 as an example. The GPS velocity is attenuated 

by a scalar filer, then converted to accelerations in Fig. 4(a). 

The acceleration differences between a GPS and SDINS are 

fed back into the 2nd order horizontal attitude damping loop 

in Fig. 4(b). The velocity residual with respect to the average 

velocity always exists because no platform can maintain an 

ideal constant speed in the practical maneuvering. As shown 

in Fig. 4, the higher q responds well to the velocity change, 

but the pitch which should be smoothed to suppress the 

noise is too fluctuant. For the helicopter velocity is normally 

over 100kts, we have to consider q to prohibit an abrupt 

change and over smoothing of a horizontal attitude and to 

keep track of the fast velocity. The adequate q for helicopter 

dynamics is chosen 0.1 based on the analysis and test results. 

The coarse azimuth alignment of MIFA estimates the 

coarse heading of a SDINS under constant speed as well. The 
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The estimated horizontal pitch angles for the different q are shown in Fig. 4 as an example. The 

GPS velocity is attenuated by a scalar filer, then converted to accelerations in Fig. 4(a). The 
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damping loop in Fig. 4(b). The velocity residual with respect to the average velocity always exists 

because no platform can maintain an ideal constant speed in the practical maneuvering. As shown in 

Fig. 4, the higher q  responds well to the velocity change, but the pitch which should be smoothed to 

suppress the noise is too fluctuant. For the helicopter velocity is normally over 100kts, we have to 

consider q to prohibit an abrupt change and over smoothing of a horizontal attitude and to keep track 

of the fast velocity. The adequate q for helicopter dynamics is chosen 0.1 based on the analysis and 

test results.  
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(a) GPS velocity and acceleration     (b) SDINS attitude and acceleration difference 

  Fig.4. Attitude estimation corresponding to the different scalar filter gains 

The coarse azimuth alignment of MIFA estimates the coarse heading of a SDINS under constant 

speed as well. The closed loop composed of a GPS tracking angle and SDINS yaw increment is 

implemented to calculate the SDINS heading,. The tracking angle GPSH  of a GPS can be calculated 

as follows 
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Using a GPS tracking angle, the SDINS heading can be calculated from the closed loop. 

1 1 1( )INS GPS
K K K KH H H K H H         (6) 

Where KH  is an INS/GPS integrated heading, INSH  is an INS heading increment, and GPSH  is a 

GPS tracking angle. With sufficiently large gain K the coarse azimuth can converged within short 

time.  

 
4. Fine Alignment 

In the third stage of MIFA, the precise attitude is estimated by the AKNF which uses the GPS as an 

aiding source. There are generally two kinds of coupling method for a SDINS and GPS: a loosely 

coupled method or a tightly coupled method. A loosely coupled system can be easily implemented 

using the GPS solution, but there must be more than four satellites to maintain 3D status. A tightly 

coupled system which uses pseudo ranges and pseudo range rates as measurements is complex for 

                                                    (a) GPS velocity and acceleration                                         (b) SDINS attitude and acceleration difference

Fig. 4. Attitude estimation corresponding to the different scalar filter gains



569

WoonSeon Hong    A Multistage In-flight Alignment with No Initial Attitude References for Strapdown Inertial Navigation Systems

http://ijass.org

closed loop composed of a GPS tracking angle and SDINS 

yaw increment is implemented to calculate the SDINS 

heading,. The tracking angle   of a GPS can be calculated as 

follows
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The coarse azimuth alignment of MIFA estimates the coarse heading of a SDINS under constant 

speed as well. The closed loop composed of a GPS tracking angle and SDINS yaw increment is 

implemented to calculate the SDINS heading,. The tracking angle GPSH  of a GPS can be calculated 

as follows 
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Using a GPS tracking angle, the SDINS heading can be calculated from the closed loop. 
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Where KH  is an INS/GPS integrated heading, INSH  is an INS heading increment, and GPSH  is a 

GPS tracking angle. With sufficiently large gain K the coarse azimuth can converged within short 

time.  
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Where fx  is the error vector of the position, velocity, and attitude, ax is the error vector of the 
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where xf is the error vector of the position, velocity, and 

attitude, xa is the error vector of the accelerometer and gyro 

biases, δt is the time delay, δϕ is the latitude error, δλ is the 

longitude error, δve is the east velocity error, δvn is the north 

velocity error, εe is the east attitude error, εn is the north 

attitude error, εu is the upper attitude error, δAx is the x axis 

accelerometer bias error, δAy is the y axis accelerometer bias 

error, δAz is the z axis accelerometer bias error, δBx is the x 

axis gyro bias error, δBy is the y axis gyro bias error, and δBz is 

the z axis gyro bias error.

In a GPS/INS system it is very common to use the GPS 

PPS (pulse per second) signal for time synchronization 

but an inherent time delay exists between the INS and 

GPS. This timing mismatch mainly causes error in an 

ongoing directional accelerometer bias. If the vehicle 

moves to the north direction, the north accelerometer 

bias is over estimated so the latitude error is dominant. 

The time delay effects are analyzed by the real driving 

test with a car which equips the SDINS. The time delay 

variable δt is excluded intentionally from the SDINS error 
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In Fig. 5(a), the vehicle moves to the north direction with an average speed of 27m/s, and to the east 

with 0.8m/s. In Fig. 5(b), a latitude error of 1.6 nm within the first Schuler cycle is dominant because 

the velocity mismatch caused by the time delay involves the large north accelerometer bias. The 

SDINS error specification used for this test is about 1.0nm/hr. It is obvious that the time delay effect 

between a SDINS and GPS mainly affects the position error in real situations.  
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Fig.5. Time delay effects between the SDINS and GPS 

In real time implementation, the SDINS saves the data necessary for aiding at the Kth PPS 

reception, which is delayed by t  from its occurrence, and we need to compensate for the GPS data 

for the Kth measurement because it is very hazardous to compensate for all variables of the state 

transition matrix of a SDINS data back by t . The PPS time delay is depicted in Fig. 6. We have to 

estimate the time delay of the PPS reception from SDINS error models and compensate for the GPS 

measurement by t . 
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Fig. 5. Time delay effects between the SDINS and GPS
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model. The results are depicted in Fig. 5. In Fig. 5(a), the 

vehicle moves to the north direction with an average 

speed of 27m/s, and to the east with 0.8m/s. In Fig. 5(b), 

a latitude error of 1.6 nm within the first Schuler cycle is 

dominant because the velocity mismatch caused by the 

time delay involves the large north accelerometer bias. 

The SDINS error specification used for this test is about 

1.0nm/hr. It is obvious that the time delay effect between 

a SDINS and GPS mainly affects the position error in real 

situations. 

In real time implementation, the SDINS saves the data 

necessary for aiding at the Kth PPS reception, which 

is delayed by δt from its occurrence, and we need to 

compensate for the GPS data for the Kth measurement 

because it is very hazardous to compensate for all variables 

of the state transition matrix of a SDINS data back by -δt. The 

PPS time delay is depicted in Fig. 6. We have to estimate the 

time delay of the PPS reception from SDINS error models 

and compensate for the GPS measurement by δt. 

The measurement at the Kth update of SDINS and its 

Tayler series expansion can be written as follows:   

12 

K t

 

  Fig.6. Time delay between the GPS and SDINS 

The measurement at the Kth update of SDINS and its Tayler series expansion can be written as 
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The measurements of the AKNF is position only because the GPS velocity calculated from the 

Doppler frequency can be interfered by the rotation of helicopter rotors. The linearized INS error 

models cause the estimation errors from theoretical values, and these estimation errors are not 

reflected exactly in the error covariance P in practice. The innovation is fed back into the 

measurement error covariance R to minimize the estimation errors and this makes the R keep up with 

the error residuals. Making R flexible gives rise to the fast convergence of an error estimation. The 

windows for this are five samples (N = 5). The major update sequences of the AKNF can be written in 

a form 

, (10)
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the GPS velocity calculated from the Doppler frequency 

can be interfered by the rotation of helicopter rotors. The 

linearized INS error models cause the estimation errors 

from theoretical values, and these estimation errors are not 

reflected exactly in the error covariance P in practice. The 

innovation is fed back into the measurement error covariance 

R to minimize the estimation errors and this makes the R 

keep up with the error residuals. Making R flexible gives rise 

to the fast convergence of an error estimation. The windows 

for this are five samples (N = 5). The major update sequences 

of the AKNF can be written in a form
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Here k  is the innovation sequence, ˆ
kW  is the windowed covariance matrix of the innovation 

sequence, ˆ
kR  is the adaptive covariance matrix of measurement noise, kK  is the Kalman gain 

matrix, and kP  is the error covariance matrix. 

The AKNF determines the optimal measurement covariance in real time from its innovation 

sequence. At the beginning of the AKNF the measurement residual is relatively large because of the 

rough attitude; therefore this is reflected in the Kalman gain and error state vector. This makes the 

measurement residual errors get small after a few seconds. 

 

 

5. Real Flight Test 

The SDINS used to verify the proposed paper is configured with digita1 self-running gyroscopes 

and semiconductor type pendulous accelerometers. The gyroscopes and accelerometers output the 

angle increments and linear accelerations via the RS422 serial communications. The typical gyro bias 

is 0.01deg/hr, accelerometer 100ug, and gyro random walk 0.007 deg/ hr . The position accuracy of 

the stand-alone GPS is 6m SEP. The true heading error of this grade SDINS is less than 0.05o and the 
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The measurements of the AKNF is position only because the GPS velocity calculated from the 

Doppler frequency can be interfered by the rotation of helicopter rotors. The linearized INS error 

models cause the estimation errors from theoretical values, and these estimation errors are not 

reflected exactly in the error covariance P in practice. The innovation is fed back into the 

measurement error covariance R to minimize the estimation errors and this makes the R keep up with 

the error residuals. Making R flexible gives rise to the fast convergence of an error estimation. The 

windows for this are five samples (N = 5). The major update sequences of the AKNF can be written in 

a form 

Fig. 6. Time delay between the GPS and SDINS
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equipped independently from the helicopter power.

A typical trajectory for the experiments is shown in 

Fig. 8. To compare the pure navigation performance, 

the conventional gyro compass alignment and MIFA are 

performed three times. The minimum flight time is over one 

Schuler cycle (84.4minutes). 

The estimated attitude during the coarse horizontal and 

azimuth alignment is depicted in Fig. 9. The helicopter 

velocity is nearly 200km/hr to the south-west direction. 

Because of the high speed of the helicopter, the small velocity 

variation may cause the horizontal attitude divergence. It is 

evident that the   of the scalar filter is properly tuned because 

the excessive fluctuation is suppressed, and the 2nd order 

damping loop for horizontal attitude maintains well the 

pitch and roll. After the 20 seconds of a maneuvering, the 

coarse heading matches well the flight direction. 

The position errors of the pure navigation after MIFA 

and conventional gyro compass alignments are depicted in 

Fig. 10 and Fig. 11. We performed MIFA for 10minutesand 

then changed the SDINS mode to the pure navigation. The 

magnitude of position error is calculated with RSS (Root 

Sum Square) of latitude and longitude errors.

Figure 10 shows the maximum RSS position errors as 

0.9nm, 0.74nm, and 0.75nm within the first Schuler cycle. 

The average maximum RSS error is 0.8nm and its circular 

error probable (CEP) is 0.66nm. The position error matches 

the standard navigation unit specification well.

The maximum RSS position errors of the MIFA are 0.53nm, 

0.37nm, and 0.4nm respectively in Fig. 11. The average of 

maximum RSS error is 0.43nm and its CEP is 0.35nm. The 

test results are summarized in Table 1. Because properly 

designed MIFA estimates and compensates for the error 

state variables, it is possible to dramatically improve the 
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long-time operation. If the MIFA proposed in this paper is not properly worked, the position error 

shall increase easily over 1NM for one Schuler cycle. The test set mounted on the UH-60 helicopter is 

shown in Fig. 7. 
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the q of the scalar filter is properly tuned because the excessive fluctuation is suppressed, and the 2nd 

order damping loop for horizontal attitude maintains well the pitch and roll. After the 20 seconds of a 

maneuvering, the coarse heading matches well the flight direction.  
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  Fig.9. Estimated attitudes during 1st and 2nd stages 

The position errors of the pure navigation after MIFA and conventional gyro compass alignments 

are depicted in Fig. 10 and Fig. 11. We performed MIFA for 10minutesand then changed the SDINS 

mode to the pure navigation. The magnitude of position error is calculated with RSS (Root Sum 

Square) of latitude and longitude errors. 
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Fig.10. Pure navigation error after GCA 

Figure 10 shows the maximum RSS position errors as 0.9nm, 0.74nm, and 0.75nm within the first 
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navigation performance. The MIFA navigation performance 

is better by 53.75 percent over the conventional gyro compass 

alignment.

6. Conclusion

This paper presented a multistage in-flight alignment 

(MIFA) for moving vehicles with no initial attitude reference, 

composed of the coarse horizontal alignment, coarse heading 

alignment, and fine alignment using the AKNF. The scalar 

filter to smooth accelerations from the noisy GPS velocity 

and the effects of the filter gain corresponding to process 

noise for the attitude estimation were discriminated for 

moving vehicles. The time synchronization effects between 

SDINS and GPS were described as a term of position error. 

We confirmed the performance of the proposed MIFA 

by real flight tests with a UH60 helicopter which mounted 

the SDINS and the stand-alone GPS. All the algorithms 

described in this paper were implemented with the real-

time software. With six real flight tests, the results confirmed 

that the position error of MIFA was reduced by 54 percent 

compared with that of the conventional gyro compass 

alignment for one Schuler cycle.
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