• 제목/요약/키워드: Input Shaping Method

검색결과 66건 처리시간 0.029초

유연우주비행체의 선회 및 진동억제를 위한 Torque Shaping 기법에 관한 연구 (A study on torque shaping method for slewing and vibration suppression of flexible structures)

  • 문종윤;석진영;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1087-1090
    • /
    • 1996
  • The objective of this paper is to present a new input torque shaping method for slewing and vibration suppression of flexible structure based on Fourier series expansion. Vibration energy of the structure with shaped control input is investigated with respect to the shaping parameter of the reference torque, maneuver time and the number of trigonometric functions to be included in the series. Analytic expressions of the performance indices and their derivatives are derived in the modal coordinates. Numerical results show the effectiveness of the proposed approach to design the open-loop control law that modifies the shape of input torque for simultaneous slewing and vibration suppression.

  • PDF

가상모드 입력성형기를 이용한 위치결정 스테이지 잔류진동 저감 (Residual Vibration Reduction of Precise Positioning Stage Using Virtual-Mode Based Input Shapers)

  • 서용규;장준원;홍성욱
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.255-260
    • /
    • 2009
  • This paper presents an experimental result of virtual mode input shaping for positioning stage. Input shaping is liable to increase the rise time of the system, which often degrades the performance of system. The virtual mode input, shaping is an input shaper design method to improve this problem. Experiments are performed with a precise positioning stage with a flexible beam of which natural frequency is adjustable. The experimental results show that the virtual-mode shaper is useful to reduce the rise time as well as the residual vibration of precise positioning stages.

  • PDF

입력성형기법에 의한 2축 천정크레인의 잔류진동 감소 (Reduction of Residual Vibration for 2 Axes Overhead Crane by Input Shaping)

  • 박운환;이재원;노상현
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.181-188
    • /
    • 2000
  • Input shaping is a method fur reducing residual vibration. Vibration is eliminated by convolving an input shaper, which is a sequence of impulses, with the desired system command. It has been applied to robot with a flexible manipulator. But it can be applied to the reduction of residual vibration far overhead crane. In this paper, input shaping shows good performance for anti-sway of overhead crane. In the z-domain, we designed an input shaper and calculated the sensitivity of it. If sensitivity is calculated in the z-domain, the shapes of sensitivity curves are expected easily. Accordingly, it is easy to design an input shaper in the z-domain. We compared the response of a system with shaper to it without that. Also, we compared El shaper to ZV shaper in view of robustness.

  • PDF

Z-영역에서 강인한 입력성형필터의 설계 (Design of Robust Input Shaping Filter in the Z-domain)

  • 박운환;이재원;임병덕;주해호
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.155-162
    • /
    • 1999
  • Input shaping technique has been used as a simple method of controlling the residual vibration of a flexible manipulator. With the conventional methods previously proposed by several authors, the frequency range that shows a good performance is restricted. When the designed frequency being different from the natural frequency of a system, the performance of control degrades remarkably. This paper introduced a new technique that designs input shaping with robustness in the z-domain.

  • PDF

유연구조물의 강인한 입력설계기법의 실험적 연구 (An Experiment Study on the Robust Input Shaping of Flexible Structures)

  • 배재성;현영오;곽동기;박영근;황재혁
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.31-37
    • /
    • 2006
  • In this paper, an experimental study on the robust input shaping for control of the residual vibration of flexible structures has been investigated. Two approaches has been used for the robustness of input shaping: the first method is to increase the number of impulses, and the other includes an EI shaper using vector diagram. The input case designed by the application of the above methods has been applied to a control problem involving residual vibration of a rotating hub with two flexible appendages. It has been found by a series of experiments that the input shaper designed in this paper works well for the residual vibration control of the flexible structure.

  • PDF

유연한 조작기를 이용한 입력성형기법의 비교 연구 (A comparative study in input shaping techniques using a flexible manipulator)

  • 심호석;이재원;주해호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1269-1272
    • /
    • 1996
  • Several input shaping techniques are suggested to reduce the vibration of a flexible manipulator. The theories of typical 4 methods(Singer, Tuttle, Feddema, Zuo) are explained and are tested by the experiment of one link flexible manipulator. Zuo's method is the best of all with respect to its robustness.

  • PDF

병진 또는 회전하여 위치 이동하는 유연 외팔보의 잔류진동 저감을 위한 최적 명령 입력 및 입력 다듬기 방법과의 비교 (Optimal Command Input for Suppressing the Residual Vibrations of a Flexible Cantilever Beam Subjected to a Transient Translation or Rotation Motion and Its Comparison with the Input Shaping Method)

  • 신기홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.589-594
    • /
    • 2007
  • In this paper, the optimal command input is considered in order to minimize the residual vibrations of a flexible cantilever beam when the beam simply changes its position by translation or rotation. Although a cantilever beam has many modes of vibration, it is shown that the consideration of the first mode is sufficient in this case. Thus, the problem becomes a singledegree-of-freedom system subjected to a ground excitation. Two simple methods are proposed to find the optimal command input based on the Shock Response Spectrum (SRS). The first method is the simplest and can be applied to lightly damped cases, and the second method is applicable to more general problems. The second method gives almost the same results as the input shaping method. However the proposed method gives a easier and clearer control strategy.

  • PDF

가상모드를 이용한 비감쇠 진동계 입력성형기 설계 방법 (A Method of Input Shaper Design Using Virtual Mode for Undamped Vibration Systems)

  • 홍성욱;최훈석;서용규;박상원
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.83-90
    • /
    • 2008
  • Input shaping is an efficient tool to eliminate transient and residual vibration caused by motion of mechanical systems. However, the rise time of the systems tends to increase due to the presence of input shapers. This paper is concerned with the rise time reduction when using input shaping. To this end, this paper proposes an input shaper design method for an undamped single mode vibration system using a virtual mode, which is not an actual mode but reflected in the design process. The essence of the proposed method is to design a three-impulse input shaper as if a single mode system has two modes: one actual mode and one virtual mode. The natural frequency of the virtual mode is a design parameter to change the rise time of the system. This paper discusses the performance of the proposed input shapers by simulation.

웨이퍼 이송 로봇의 잔류진동 저감을 위한 입력성형 기법의 적용 (Application of an Input Shaping Method for Reduction of Residual Vibration in the Wafer Positioning Robot)

  • 안태길;임재철;김성근;김국원
    • 반도체디스플레이기술학회지
    • /
    • 제11권2호
    • /
    • pp.33-38
    • /
    • 2012
  • The wafer positioning robot in the semiconductor industry is required to operate at high speed for the improvement of productivity. The residual vibration caused by the high speed of the wafer positioning robot, however, makes the life of the robot shorter and the cycle time longer. In this study, the input shaping and the path of the system are designed for the reduction of the residual vibration and the improvement of the cycle time. The followings are the process for the reduction and the improvement; 1) System modeling of the wafer positioning robot, 2) Verification of dynamic characteristics of the wafer positioning robot, 3) Input shaping plan using impulse response reiteration, 4) Simulation test using SIMULINK program, 5) Analysis of result.