• 제목/요약/키워드: Input Capacity Factor

검색결과 89건 처리시간 0.027초

Experimental Study on Performance Comparison of Air-Conditioner with PF Heat Exchanger (PF 열교환기를 적용한 공조기의 성능 비교 실험연구)

  • Kwon, Young-Chul;Park, Yoon-Chang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제10권3호
    • /
    • pp.470-475
    • /
    • 2009
  • In the present study, the heat transfer characteristics of the fin-tube and PF heat exchangers and the performances of the air-conditioner are experimentally investigated. Also, Cooling Seasonal Performance Factor(CSPF) of the air-conditioner is evaluated. For the heat exchanger experiment, the heat transfer and pressure drop are obtained. For the air-conditioner experiment, the cooling capacity, input power and COP are obtained. The air-enthalpy calorimeter and the constant temperature water bath are used. As the inlet air velocity increases, the heat transfer rate and pressure drop of the heat exchanger increased. PF heat exchanger has smaller refrigerant weight and larger capacity and COP than the fin-tube heat exchanger. The performance of PF-2 heat exchanger with the squarer fin is more excellent than that of PF-1 heat exchanger with the triangler fin. Also, CSPF of the fm -tube and PF heat exchanger is evaluated.

Performance-based reliability assessment of RC shear walls using stochastic FE analysis

  • Nosoudi, Arina;Dabbagh, Hooshang;Yazdani, Azad
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.645-655
    • /
    • 2021
  • Performance-based reliability analysis is a practical approach to investigate the seismic performance and stochastic nonlinear response of structures considering a random process. This is significant due to the uncertainties involved in every aspect of the analysis. Therefore, the present study aims to evaluate the performance-based reliability within a stochastic finite element (FE) framework for reinforced concrete (RC) shear walls that are considered as one of the most essential elements of structures. To accomplish this purpose, deterministic FE analyses are conducted for both squat and slender shear walls to validate numerical models through experimental results. The presented numerical analysis is performed by using the ABAQUS FE program. Afterwards, a random-effects investigation is carried out to consider the influence of different random variables on the lateral load-top displacement behavior of RC members. Using these results and through utilizing the Monte-Carlo simulation method, stochastic nonlinear analyses are also performed to generate random FE models based on input parameters and their probabilistic distributions. In order to evaluate the reliability of RC walls, failure probabilities and corresponding reliability indices are calculated at life safety and collapse prevention levels of performance as suggested by FEMA 356. Moreover, based on reliability indices, capacity reduction factors are determined subjected to shear for all specimens that are designed according to the ACI 318 Building Code. Obtained results show that the lateral load and the compressive strength of concrete have the highest effects on load-displacement responses compared to those of other random variables. It is also found that the probability of shear failure for the squat wall is slightly lower than that for slender walls. This implies that 𝛽 values are higher in a non-ductile mode of failure. Besides, the reliability of both squat and slender shear walls does not change significantly in the case of varying capacity reduction factors.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

Analysing Optimum Tugboat Capacity in Ulsan Port by Simulation Technique (시뮬레이션 기법을 활용한 울산항의 적정 예선 척수 분석)

  • Park, Jun-Mo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제26권5호
    • /
    • pp.445-453
    • /
    • 2020
  • The use of tugboats for the safe berthing/unberthing of ships is the most crucial factor in the safe and efficient operation of the harbor. However, the adequate number and size of tugboats that should be held based on the characteristics of the port have not been investigated in detail, which causes disputes between involved parties. Therefore, the suitable number of tugboats and the ratio of the tugboat horsepower were determined in this study using simulation techniques, with focus on Ulsan Port. First, the ship and tugboat-operating models were designed for simulation application. Next, the input variables defined in the model design were standardized in an inputtable form using ARENA software. In addition, the arrival and division process of the ship was designed and simulated as an ARENA model. Finally, the simulation results for six scenarios showed that an effective tugboat operation could be achieved when 42 tugboats were held at Ulsan Port.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels (인장전단시험을 이용한 TRIP1180강의 계면파단특성 평가)

  • Park, Sang-Soon;Choi, Young-Min;Nam, Dae-Geun;Kim, Young-Seok;Yu, Ji-Hun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • 제26권6호
    • /
    • pp.81-91
    • /
    • 2008
  • The weldability of resistance spot welding of TRIP1180 steels for automobile components investigated enhance in order to achieve understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP1180 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the spot welded samples, the load-carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface also, dimple fracture areas were drawmatically increased with heat input which is propotional to the applied weld current. In spite of the high hardness values associated with the martensite microstructures due to high cooling rate. The high load-carrying ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP1180 steels, the load-carrying capacity of the weld should be considered as an important factor than fracture mode.

A Study on Suction Pump Impeller Form Optimization for Ballast Water Treatment System (선박평형수 처리용 흡입 펌프 임펠러 형상 최적화 연구)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제25권1호
    • /
    • pp.121-129
    • /
    • 2022
  • With the recent increase in international trade volume the trade volume through ships is also continuously increasing. The treatment of ballast water goes through the following five steps, samples are taken and analyzed at each step, and samples are obtained using a suction pump. These suction pumps have low efficiency and thus need to be improved. In this study, it is to optimize the form of the impeller which affects directly improvements of performance to determine the capacity of suction pump and to fulfill the purpose of this research. To do it, we have carried out parametric design as an input variable, geometric form for the impeller. By conducting the flow analysis for the optimum form, it has confirmed the value of improved results and achieved the purpose to study in this paper. It has selected the necessary parameter for optimizing the form of the pump impeller and analyzed the property using experiment design. And it can reduce the factor of parameter for local optimization from findings to analyze the property of form parameter. To perform MOGA(Multi-Objective Genetic Algorithm) it has generated response surface using parameters for local optimization and conducts the optimization using multi-objective genetic algorithm. with created experiment cases, it has performed the computational fluid dynamics with model applying the optimized impeller form and checked that the capacity of the pump was improved. It could verify the validity concerning the improvement of pump efficiency, via optimization of pump impeller form which is suggested in this study.

A Study on the Optimal Use of Silent Discharge Type Ozonizer in Purification Plant (정수장의 무성방전형 오존발생기 최적활용방안에 관한 연구)

  • Shin, Hong-Sub;Park, Hyun-Mi;Kwon, Young-Hak;Song, Hyun-Gig;Park, Won-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제29권3호
    • /
    • pp.54-60
    • /
    • 2015
  • There are 5 purification plants with the adopted advanced water purification treatment process in Korea. Annual operating costs were 8,990 million won including purchase cost of oxygen and power usage charges. We need research to optimize, in the future, when considering the direction of domestic water treatment continues to adopt advanced water treatment process. In this paper, calculate the optimal operating costs by injected the oxygen gas, used power cost. approximately 25% of the operating costs can be reduced when injected the ozone gas is 1.0ppm than 2.0ppm, the necessary amount of oxygen is increased then power is lower. so operating costs are decided according to oxygen costs. On the other hand, high ozone concentration 2.0ppm, the necessary power is increased then amount of oxygen is lower. Therefore, in the case of G purification plant, the controlling factor of the input ozone concentration 2ppm, PID control operation by setting the concentration of over 10Wt% is efficient. The installed capacity is the more little the more better when considering on Ozone injection rate in the process of water treatment.

Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics (전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석)

  • Kim, Jong-Gyeum;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • 제59권2호
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

Performance Analysis of Electric Rail Car Office Using Computer Simulation (시뮬레이션을 이용한 전동차사무소 수행도 평가)

  • Lee, C.W.;Kim, W.Y;Kwon, Y.J;Kim, S.Y.;Yun, CH.;Oh, SJ;Jeon, T.B
    • Journal of Industrial Technology
    • /
    • 제24권A호
    • /
    • pp.37-46
    • /
    • 2004
  • A performance analysis for newly being considered electric rail car office has been made in this study. The major purpose is to examine a proposed design in terms of its capacity and the proposed number of travels (82-84) per day. For this study we first examined the overall system configuration with detailed operational processes of cleaning and inspection. We then developed a simulation model using ARENA and designed input data from 12 selected factors and their interaction effects. A simulation run for each treatment combination of $L_{16}(2^{15})$ orthogonal array was run and 20 batch means were obtained. Through careful analyses of the results obtained, we drew a diversity of suggestions including the best factor level combination. Our confirmation experiments at the optimal level combination further validate the possibility of 82 runs and the consistency in the results.

  • PDF

A Model for Real-time Reservoir Operations during Flood Period.II : Single Reservoir Operating Rules at Daecheong Dam (홍수기중의 실시간 저수지운영 모형(II) - 대청댑의 단일저수지 운영 방안 -)

  • 심명필;박인보
    • Water for future
    • /
    • 제23권4호
    • /
    • pp.499-507
    • /
    • 1990
  • Real-time reservoir operation models during flood period require optimization of hourly releases from the input data through on-line system. And predicted values. An algorithm of the simulation model to resolve the problem has already been reported with formulation of objectives to minimize the flood damage in downstream reaches and to conserve water at the end of operation for the later use. This paper presents an application of the model to a single reservoir system at the Daecheong Dam during flood and the results are reviewed. This paper also reviews measured inflows and releases in the past. The model is applied to the flood hydrographs of several return periods assuming different reservoir levels at the beginning of the operation. Also it demonstrates the simulation of test run with inflow forecasts obtained by rainfall-runoff model and compares the results. As a result, the model can use efficiently the flood control capacity with consideration of risk factor for the uncertainties associated with inflow forecasts.

  • PDF