• Title/Summary/Keyword: Input/output Control

Search Result 2,504, Processing Time 0.042 seconds

OBSERVER-BASED INPUT-OUTPUT LINEARIZATION CONTROL OF A MULTIVARIABLE CONTINUOUS CHEMICAL REACTOR

  • Mohamed, Bouhamida;Bachir, Daaou;Abdellah, Mansouri;Mohammed, Chenafa
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.641-658
    • /
    • 2012
  • The goal of this paper is to develop a nonlinear observer-based control strategy for a multi-variables continuous stirred tank reactor (CSTR). A new robust nonlinear observer is constructed to estimate the whole process state variables. The observer is coupled with a nonlinear controller, designed based on the input-output linearization for controlling the concentration and reactor temperature. The closed loop system is shown to be globally asymptotically stable based on Lyapunov arguments. Finally, computer simulations are developed for showing the performance of the proposed controller.

Cycloconverters with Resonant Circuits for Induction Motor Drives (기진회로를 이용한 사이크로콘버터에 의한 유도전동식 구동)

  • 김영석;조규민
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.125-134
    • /
    • 1992
  • This paper presents a cycloconverter with an LC resonant circuit for an induction motor drive. The cycloconverter can keep input displacement factor at 1.0 by independently controlling real and reactive power under any load conditions. Furthermore it can keep power factor at about 1.0 since input and output current waveforms are nearly sinusoidal. Since it uses high frequency resonant circuit for commutation source, it can produce an output voltage of hundreds of hertz. Since it is also possible to make a system of high capacity using the cycloconverter, it is appropriate to drive motors with high speed and high capacity as well as general purpose motors, In this paper, we describe the operating principles of the cycloconverter and power control algorithms, and analyze its waveforms and present its characteristics. Expermental results are shown for the volts/hertz control of the induction motor and the validity of the proposed model is verified.

On Mobility-Supporting Transmit Beamforming in MISO FDD Wireless Systems

  • Lee, Woo-Kwon;Sepko, Brian J.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.308-315
    • /
    • 2008
  • When operating in frequency-division duplex (FDD) mode, transmit beamforming in multiple-input single-output (MISO) wireless communication systems typically requires accurate knowledge of downlink channel state information (CSI) at the transmitter. In practical FDD systems, obtaining such downlink CSI at the transmitter is challenging, if not impractical. To circumvent such challenge and support user mobility, we present a new method for transmit beamforming based on simple beam-control commands (BCCs) in MISO FDD mobile systems. We then numerically evaluate the effects of BCC errors in terms of transmit power efficiency, system capacity, and outage probability.

CONSTRUCTION OF A ROBUST CMPEMSATION CONTROLLER

  • Hyogo, Hidekazu;Kamiya, Yuji;Shibata, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.471-476
    • /
    • 1994
  • In this paper a new controller is proposed which gives the resultant system the appointed input-output properties, low sensitivity and robust stability. The proposed controller consists of a reference model and a robust compensator. The reference model determines the input-output properties of the total system and is constructed by using the nominal model of the plant. We can design the reference model by applying design techniques which pay attention to steady robustness and no attention to sensitivity and robust stability, and need all state variables of the plant. The robust compensator is obtained as a solution of the mixed sensitivity problem in H infinity control theory. Therefore, low sensitivity and robust stability are guaranteed in the resultant system. The simulation experiments show that the proposed controller is effective and useful.

  • PDF

An Adaptive Tracking Control of SISO Nonlinear Systems (SISO 비선형 시스템의 적응 추종제어 기법)

  • Yang, Hyeon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, an adaptive control law for nonlinear systems represented by input-output models are proposed under the assumption that unknown system parameters are in a known compact and convex set. Contrary to the previous results, the compact and convex set is not restricted to a ball whose center is at the origin or convex hypercube. It is proven that the proposed parameter update rule produces a sequence of parameters which reside in the set and guarantees that the position, velocity, and acceleration error converges to zero as time goes to infinity. This theoretical result was justified through simulations.

  • PDF

Peak Voltage Feedforward Control of PWM Buck-boost Converter (피드포워드 제어 방식을 적용한 승강압형 컨버터)

  • Gwag, Gun-Hee;Seo, Bo-Hyeok;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2721-2723
    • /
    • 1999
  • DC and small-signal ac characteristics are examined for a pulse-width modulated (PWM) dc-dc buck-boost converter with a peak voltage modulation (PVM) feedforward control. Circuit model is used to derive an expression for the output voltage in terms of the input voltage and load resistance. Small-signal circuit model is used to derive the input-to-output voltage transfer function (audiosusceptibility).

  • PDF

A Controlled Neural Networks of Nonlinear Modeling with Adaptive Construction in Various Conditions (다변 환경 적응형 비선형 모델링 제어 신경망)

  • Kim, Jong-Man;Sin, Dong-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1234-1238
    • /
    • 2004
  • A Controlled neural networks are proposed in order to measure nonlinear environments in adaptive and in realtime. The structure of it is similar to recurrent neural networks: a delayed output as the input and a delayed error between tile output of plant and neural networks as a bias input. In addition, we compute the desired value of hidden layer by an optimal method instead of transfering desired values by backpropagation and each weights are updated by RLS(Recursive Least Square). Consequently, this neural networks are not sensitive to initial weights and a learning rate, and have a faster convergence rate than conventional neural networks. This new neural networks is Error Estimated Neural Networks. We can estimate nonlinear models in realtime by the proposed networks and control nonlinear models. To show the performance of this one, we have various experiments. And this controller call prove effectively to be control in the environments of various systems.

  • PDF

On order determination in identification of closed-loop systems

  • Oura, Kunihiko;Akizuki, Kageo;Hanazaki, Izumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.480-483
    • /
    • 1995
  • Identification of a process in closed-loop control system is an important problem in practice. This paper deals with parameter estimation using input-output data of the process operating in a closed-loop system. It is necessary to determine orders and delay-time to get consistent estimators by least square method for input-output data collected from the process. The authors considered a problem to determine delay-time in the condition that orders were known, in last KACC. So we extend the range to determine orders and delay-time in this paper.

  • PDF

A CLASS OF ASYMPTOTICALLY STABILIZING STATE FEEDBACK FOR UNCERTAIN NONLINEAR SYSTEMS

  • Hashimoto, Yuuki;Wu, Hansheng;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.271-274
    • /
    • 1995
  • This paper is concerned with the problem of robust stabilization of uncertain single-input and single-output nonlinear systems. Based on the input/output linearization approach for nonlinear state feedback synthesis in conjunction with Lyapunov methods, a stabilizing state feedback controller is proposed. Compared with the controllers reported in the control literature, instead of uniform ultimate boudedness, the controller proposed in this paper can guarantee uniform asymptotic stability of nonlinear systems in the presence of uncertainties. The required information about uncertain dynamics in the system is only that the uncertainties are bounded in Euclidean norm by known functions of the system state.

  • PDF

Reduced-Order Observer Design for Nonlinear Systems Using Input Output Linearization Transformation (입출력선형화 상태변환을 이용한 비선형 시스템의 저차 관측기 설계)

  • 조남훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.907-914
    • /
    • 2004
  • In this paper, we present a reduced-order observer for a class of nonlinear systems based on the input output linearization. While the most results in the literature presented full-order nonlinear observer, we proposed a procedure for the design of reduced-order observer far nonlinear systems that are not necessarily observable. Assuming that there exists a global observer fer internal dynamics and that certain functions are globally Lipschitz, we can design a global reduced-order observer An illustrative example is included that demonstrate the design procedure of the proposed reduced-order observer.