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Abstract This paper is concerned with the problem of robust stabilization of uncertain single-input
and single-output nonlinear systems. Based on the input/output linearization approach for nonlinear
state feedback synthesis in conjunction with Lyapunov methods, a stabilizing state feedback controller
is proposed. Compared with the controllers reported in the control literature, instead of uniform
ultimate boudedness, the controller proposed in this paper can guarantee uniform asymptotic stability

of nonlinear systems in the presence of uncertainties.

The required information about uncertain

dynamics in the system is only that the uncertainties are bounded in Euclidean norm by known

functions of the system state.
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1. INTRODUCTION

Many physical systems have uncertain elements; these
may be parameter variations, nonlinearities not satisfying
closed-form expression of known functions, external distur-
bances. Thus, it is necessary to design a stabilizing con-
troller such that some types of stability of such systems can
be guaranteed in the presence of uncertainties.

Stabilization of a dynamical system with significant un-
certainties has widely been studied over the last decade [2,
3, 5, 6]. In [3], for example, for a class of dynamical systems
with the so-called matchced uncertainties, a saturation-type
controller is designed which guarantees uniform bounded-
ness and uniform ultimate boundedness of such dynamical
systems. In [2], a class of linear and nonlinear state feed-
back controllers are proposed, and the concept of practical
stability is introduced. In [5], the input/output lineariza-
tion approach is applied to synthesize a robust nonlinear
state feedback controller that guarantees uniform ultimate
boundedness for uncertain nonlinear systems. In [6], a new
theory on asymptotic stability is developed, and a class of
continuous state feedback controllers are proposed to guar-
antee asymptotic stability.

In this paper we consider a class of uncertain single-input
and single-output nonlinear systems. We propose a class
of state feedback controllers for such systems such that in-
stead of uniform ultimate boundedness, uniform asymptotic
stability can be guaranteed. The difference between our
method and the ones reported in the control literature is
that feedback linearization approach is applied to design ro-
bust controllers which guarantee asymptotic stability. The
novelty of the results obtained in this paper is to be viewed
as generalizations of work pioneered by Qu[6].
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2. PROBLEM FORMULATION AND SOME
ASSUMPTIONS

2.1 Problem Formulation

Consider the SISO nonlinear uncertain systems of the
form

(f(z) + Af)+ (9(z) + Ag)u
y = h(z)+Ah (1)

z

where z € R" is the state vector, u € R is the input, y €
R is the output. Af Ag, and Ak represent uncertainties
corresponding to f(-),g(-), and A(-), respectively.

In this paper, based on the input/output linearization
approach for uncertain nonlinear systems (1), a stabilizing
state feedback controller is proposed. The results of in-
put/output linearization is summarized as follows.

2.2 Feedback Linearization
Consider the nominal system of (1) described by the form

i o= f(z)+g(au
y = h(z) @)

where ¢ € R, u € R, y € R and the state feedback con-
troller can be represented by a nonlinear function

u=Y(z,v) (3)

In the following notations Lysh{z) and L h(r) denote the
Lie derivative of the function h{z) with respect to the vector



field f and that with respect to g, respectively.

Lg(h)=(dh,f)=

=1

— 9h
Ly(h) = (dh,g) = Z Pyl
=1

oh
pyel

High order Lie derivatives can be defined recursively as fol-
lows.

Lih(z) = Ly (L7 h(2)), k> 1
The Lie bracket [f, g] is a vector field defined by

_ %9, 9

/.91 = ox Bzy

The notation ad;g(z) denotes the Lie bracket of the vector
fields f and g. The following notation is standard.

ad(}(g) g

adi(g) = [f.9]

adi(g) = [f.[f 9]
adf(g) = [f,adi'(g)]

Consider (2) and the problem of finding a state feedback
of the form (3) such that the v — y input/output system is
linear and of minimal order. The solution to this problem
i1s summarized in the following lemma.

Lemma 1 [4] Suppose that the minimal order of the
v —y system is the relative order of (2), i.e., there exists the
smallest integer r satisfying

<dh,ad;_1(g)> #0
The state feedback is of the form
v =Y BLi(h)(z)
k=0

C T E0 B (dhy ad (9)(2))

(4)

where f1,..., 3, are arbitrarily selected numbers. The cor-
responding input/output closed system is governed by

r

>3

Bk —+
dt*
k=0

d*y _

=7

2.8 Some Standard Assumptions

We introduce the following standard assumptions.
Assumption 1 f,g, and h are smooth. Af, Ag, and Ah
are C° and such that

AfeXy
Ag e X,
Al €y
where ;. ¥ . and X5 are specified sets.

Assumption 2 The origin » = 0 is a uniformly asymp-
totically stable equilibrium point of the unforced nominal
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closed-loop system

> B Ly(h)(=)
OB, (@ ad (@) )

fe) -

z

In particular, there exists an C* function V : R® — R* and
continuous strictly increasing function y; : Rt — R*,i =
1, 2, 3 satisfying
y(0)=0,:=1,2,3
lim vyi(r) =00, i=1,2
T—00

such that

n(llel) £ V() < v(ii=l))

ST BLi(h)
k=0

*=18, (dh,ad}" (g))

> < -(li=l)
(5)

In other words, there is a Lyapunov function V for the un-
forced nominal system.

Assumption 3 For each Af € 2y and Ag € ¥, there
exist mappings Af* : R — R and Ag* : R* — R satisfy-
ing

v, f —
< ey

(—1)"7'8, (dh,ad} ™' (9)) A = gAf*
Ag = gAg* (6)

for all £ € R™.
Assumption 4 There exists an C° function p: R — R
such that

1+ Ag* > pu(z)>0 (7
for every Ag € 4. Moreover, p(z) is bounded

(8)

Assumption 5 There exists an C° function ¢ : R® — R
such that

u® > p(z)

602 s |ar - (Z BeLi(W)Ag’ ©

for every Af € ¥y and Ag € &,
Assumption 6 There exists §, > 0 such that

|Ak| < bn

for every Ah € Xy,

In this paper we consider the problem of designing a ro-
bust controller which can guarantee uniform asymptotic sta-
bility of uncertain nonlinear systems (1) by using feedback
linearization (4).



3. ROBUST CONTROLLER

In this section we propose the following feedback con-
troller.

0= BeLi(h)(x)

u = k=0 (10)

(=1)"—13, <dh, (l.d}—1 (q)($)>

where

et u0¢(g;)(dV,g)($) 1
é(z)n ((__l)r—lﬁr <dh,a.d;“l(9)>(’“')> .

£ .
£ i) < eplt)
ne(€) =4 ¢ (12)
q il > e
and o(t) satisfies the following inequalities
0 <p(t) <1
w(t) <0

where
w(t) 2 /¢(t) dt

The following theorem shows the asymptotic stability of sys-
tem (1) under the control (10).
Theorem Consider system (1) satisfying Assumptions 1

to 6. Let lim, .o inf y3(r) N3 Then, a feedback controller
(10) with ¢ < 4{ being a positive definite function of [[zo|| is
continuous and makes every solution of system (1) uniform
asymptotically stable in the large.

Proof: Define x(z) and A(z) as

K(z) 2 ) BeLi(h)
Az) £ (-1)7'8 (dh,ad; (9))

Substituting (10) into (1) we obtain

. A
o]+ for- ] 52

Using (6) we can write

i=[f- 5o+ L1ar —xag)+ L4000

Thus
¥ d‘/7 * *
Vo= (avir-S)+ 8 ag cag

Since V is a scalor function, the following equation is satis-

fied.

(dvig)

Vo< —n(nxnw‘——;— Af* = xdg"|

(dV,g)

ST

(1+Ag7w

Substituting v from (11)

. V,
Vo< _.,3(||z||)+|<d_)‘£l |Af* = kAg®|
) N
‘ | U ](—)€<u%g;:v,gz)
where
o5 ey = ) ety e <ep(t)
o) = {IEI el > ee(t)
Using (7), (8) and (9)
p | u°8(dV,g)

Vo< —nllal) + -5

A

_ o | psavig)| 1
uo A 0. (u°¢§;iV,92)

Thus, if |£] > ep()
V < —m(]l=ll)

and if |€] < ex(t)

. 1
V < ~a(llal) + gee()
by using the following equation

g - S0

1
() < va(t)

Consequently, we conclude

V < ~x(llell) + ee(t)

Here, we introduce the following lemma to complete the
remainder of the proof.

Lemma 2 [6] Suppose that V(.): R* x R — Rt is a
Lyapunov function candidate for any given continuous time
system with the following properties:

(=) < Viz,t) < v (ll=l)
Viz,t) < =v(l=zll) + v(n)e(2)

where n > 0 is a constant, imp_ o v;(p) = 00,7 = 1,2, m
and v, are those defined in Assumption 2, v is continuous

and positive definte, and v(0) = 0. Let w(t) £ [ e(t)dt
denote the indefinte integral function of (t). If function ¥,
@(t), and w(t) satisfy v(y) — ¥(n) > 0 whenever y > 5, 0 <
¢(t) <1, w(t) €0, and if the parameter n can be chosen to
be a positive definte function of ||zol}, then, every continuous
solution z(t; zo,to) : [to, ¢] — R™ of the given system, with
initial state z(to) = zo, 1s asymptotically stable in the large.

By using above lemma, we can obtain the results in this
theorem. L



4. ILLUSTRATIVE EXAMPLE

Consider the following system to demonstarate the valid-
ity our results.

& = (f(z)+Af)+(9(z) + Ag)u
y = h(z)+ Ah
where
—~10x, — 21722 + 22
flz) = ks
10
o(x) = m h(z) = T
0
aAf = [—-0.()51:2]
Ag = [o(.)s]

It can be easily verified that < dh,g >3 0 and thus the
relative order of the system is 1. Thus, from (10), we let
v — o (10112) -5 (

aoy

where o = 1.0, 61 = 1.0. Consider the following positive
definte function as a Lyapunov function candidate for un-
forced nominal system.
2
+3 ( )

Then V has the time derivative

) 2

which is negative definite. Thus, V is a desirable Lyapunov
function.

1 x
10(10+z22)2

U=

2ri1x2
10+.’L‘2

2
10 + T2

2

V=2$1+

T2

V= —4g2 — (——
-\ To12,

Since
» —0051}2
A = —
f (10 + 122)2
Ag® = 0.3

from (7) and (8), let p(z) = pu° =0.3.
From (9), let

olz) = — | =005z 0.3z, 0.03z322
T03](10+22)2 (104 22) (10 + 72)2
Then
B 612
v =—g(x)ne <0.3 [10 + m] ¢(z))
where
3 .
— if < —at
e = ) cop(man IS cop(zat
,—f:l- if |¢] > eexp(—at)
S

output
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Fig. 1. The response of a output in Example with initial
condition z(0) = [4 4]°.

Pick ¢ = 1.00, @ = 0.01. Then, the results of simulation are
shown in Fig. 1.

It is observed in Fig. 1 that the output of the system is
asymptotically stable, as predicted.

5. CONCLUSION

The problem to design a stabilizing controller for un-
certain nonlinear systems which guarantees asymptotic sta-
bility has been considered. For such a problem, we have
proposed a calss of robust controllers by feedback lineariza-
tion and Lyapunov methods. The difference between our
method and the ones reported in the control literature is
that feedback linearization approach is applied to design
robust controllers which guarantee asymptotic stability in-
stead of uniform ultimate boundedness.
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