• Title/Summary/Keyword: Input/output Control

Search Result 2,504, Processing Time 0.039 seconds

Integral sliding Mode Control with High-gain Observer (고이득 관측기를 이용한 적분 슬라이딩 모드 제어)

  • Oh, Seung-Rohk;Shin, Jun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.233-236
    • /
    • 2002
  • We consider a single-input-single-output nonlinear system which can be represented in a normal form. The nonlinear system has a modeling uncertainties including the input coefficient uncertainties. A high-gain observer is used to estimate the states variables to reject a modeling uncertainty. A globally bounded output feedback integral sliding mode control is proposed to stabilize the closed loop system. The proposed integral sliding mode control can asymptotically stabilize the closed loop system in the it presence of input coefficient uncertainty.

  • PDF

A Study on Position control of a Flexible One-Link Robot Arm (유연한 단일축 로보트 팔의 위치제어)

  • 송봉기;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.200-206
    • /
    • 1991
  • In this paper, an output feedback is used to reduce the effect of the vibration in the control of a flexible one-link robot arm. A PD control method with a time varying gain is proposed to improve the performance of the system in tip deflection and settling time for the step reference input. By making the change of feedback gain smoothly, th input torque can be made smooth. When there is a payload with unknown mass, an interpolation method which uses the inrehgrated value of the transient response of the hub angle is proposed for the estimation of teh payload mass. This method can be used when the reference input is known and we can get highly accurate estimate for the unknown payload. It is also demonstrated that flexible one-link arm can be controlled prettry accurately by an output feedback in a noisy environment without knowing the mass of the payload.

  • PDF

GLOBAL ASYMPTOTIC OUTPUT TRACKING FOR A CLASS OF NONLINEAR SYSTEMS

  • Alimhan, Keylan;Inaba, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.557-560
    • /
    • 2005
  • This paper considers a global asymptotic output tracking problem with a prescribed constant reference signal for a class of single-input and single output-output nonlinear systems. It is shown that under some mild conditions on such a system there is a smooth output feedback achieving global asymptotic output tracking and such a smooth output controller is explicitly constructed by a new design method proposed. The usefulness of our result is illustrated by a numerical example.

  • PDF

Controller of nonlinear servo system

  • Yamane, Yuzo;Zhang, Xiajun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.342-345
    • /
    • 1996
  • This paper is dealing with a design of linear controller so that the plant output is regulated to follow a reference model output when the plant equation is described by a class of nonlinear time-varying control systems.

  • PDF

Study of a Durability Test for Single-input Multi-output Power Take-off Gearboxes (단일입력 다출력 PTO 기어박스의 내구성시험에 관한 연구)

  • Lee, Yong Bum;Yoo, Han Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This study analyzed a life test method for a power take-off (PTO) gearbox. An engine transfers mechanical power (rotation and torque) to a hydraulic pump through a PTO Gearbox with one input shaft and three output shafts. PTO gear box durability under high loads over long time periods was tested using dynamometers. In order to reflect the rated operating conditions, power must be distributed to each output shaft, and experiments were conducted under various conditions to verify the characteristics of the distributed power. An accelerated life test was designed using speed and torque as acceleration factors. Also, efficiency tests were conducted under various load conditions. Also, a lubrication oil composition analysis was performed to analyze gearbox wear status.

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Shim, Kyu-Hong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.34.4-34
    • /
    • 2001
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition so called output feedback exponential passivity (OFEP). The designed high gain adaptive controller has simple structure and high robustness with regard to bounded disterbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we deal with a design problem of the robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances.

  • PDF

Adaptive Predistortion for High Power Amplifier by Exact Model Matching Approach

  • Ding, Yuanming;Pei, Bingnan;Nilkhamhang, Itthisek;Sano, Akira
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.401-406
    • /
    • 2004
  • In this paper, a new time-domain adaptive predistortion scheme is proposed to compensate for the nonlinearity of high power amplifiers (HPA) in OFDM systems. A complex Wiener-Hammerstein model (WHM) is adopted to describe the input-output relationship of unknown HPA with linear dynamics, and a power series model with memory (PSMWM) is used to approximate the HPA expressed by WHM. By using the PSMWM, the compensation input to HPA is calculated in a real-time manner so that the linearization from the predistorter input to the HPA output can be attained even if the nonlinear input-output relation of HPA is uncertain and changeable. In numerical example, the effectiveness of the proposed method is confirmed and compared with the identification method based on PSMWM.

  • PDF

A Versatile Universal Capacitor-Grounded Voltage-Mode Filter Using DVCCs

  • Chen, Hua-Pin;Shen, Sung-Shiou
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.470-476
    • /
    • 2007
  • In this paper, a versatile three-input five-output universal capacitor-grounded voltage-mode filter is proposed. The circuit employs two differential voltage current conveyors as active elements together with two grounded capacitors and four resistors as passive elements. The proposed configuration can be used as either a single-input five-output or three-input two-output. Unlike the previously reported works, it can simultaneously realize five different generic filtering signals: lowpass, bandpass, highpass, bandreject, and allpass. It still maintains the following advantages: (i) the employment of all grounded capacitors, (ii) no need to employ inverting-type input signals, (iii) no need to impose component choice, (iv) orthogonal control of the resonance angular frequency ${\omega}_o$ and the quality factor Q, and (v) low active and passive sensitivity performances.

  • PDF

Direct Just-in-time Methods for Nonlinear Control Design

  • Qiubao Zheng;Kim, Hidenori ura
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.4-93
    • /
    • 2001
  • Based on input and output data pairs of nonlinear systems, this paper proposes a simple and effective Just-In-Time (JIT) method, called Direct JIT Control, for nonlinear control design. It uses an inverse model of controlled plant to compute an initial control action, and then adapts the initial control action by adding a fine-tuning control action, depended on the errors between the real outputs and the expected reference signals. Meanwhile, the proposed JIT method accomplishes the adaptation of the inverse model just simply by means of the refreshment of input and output data pairs. In addition, the JIT modeling technique guarantees this method to obtain an approximate inverse model of the controlled nonlinear plant in the neighborhood of a query. Based on a ...

  • PDF

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.