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In this paper, a versatile three-input five-output 
universal capacitor-grounded voltage-mode filter is 
proposed. The circuit employs two differential voltage 
current conveyors as active elements together with two 
grounded capacitors and four resistors as passive elements. 
The proposed configuration can be used as either a single-
input five-output or three-input two-output. Unlike the 
previously reported works, it can simultaneously realize 
five different generic filtering signals: lowpass, bandpass, 
highpass, bandreject, and allpass. It still maintains the 
following advantages: (i) the employment of all grounded 
capacitors, (ii) no need to employ inverting-type input 
signals, (iii) no need to impose component choice, (iv) 
orthogonal control of the resonance angular frequency ωo 
and the quality factor Q, and (v) low active and passive 
sensitivity performances. 
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I. Introduction 

As a current-mode active device, the differential voltage 
current conveyor (DVCC) has the advantages of both the 
second-generation current conveyor (CCII) (such as large 
signal bandwidth, great linearity, and wide dynamic range) and 
the differential difference amplifier (DDA) (such as high input 
impedance and arithmetic operation capability) [1]. This 
element is a versatile building block whose applications appear 
in the literature [1]-[7]. Many voltage-mode multifunction 
filters using current conveyors have been proposed [8]-[12]. 
However, these configurations require at least four active 
components.  

In 2003, Chang and others proposed a voltage-mode 
multifunction filter with a single input and four outputs [13]. In 
2004, Horng and others proposed another multifunction filter 
with a single input and three outputs [14]. However, with these 
two proposed configurations only three standard filter signals can 
be simultaneously obtained. In 2006, Horng and others. 
proposed four voltage-mode universal biquadratic filters with a 
single input and five outputs [15]. The proposed circuits can 
realize highpass (HP), bandpass (BP), lowpass (LP), bandreject 
(BR), and allpass (AP) simultaneously, but need a component-
matching condition to realize the AP filter response. Also, each of 
the proposed circuit employs many more passive components.  

In 2007, Chen [16] proposed another voltage-mode universal 
biquadratic filter with a single input and five outputs using two 
differential difference current conveyors (DDCCs), two 
grounded capacitors, and three resistors. The circuit uses one 
Z+ output device, whereas the proposed circuit uses two Z 
outputs. The circuit uses three Y inputs, whereas the proposed 
circuit uses only two Y inputs. The two capacitors in each of 
the two DVCCs are similarly positioned at the Z output 
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terminals. The circuit in [16] can realize the AP filter without 
any component-matching condition. However, it needs to 
make capacitor C1 float and insert another voltage input signal 
Vin into the floating terminal of capacitor C1. In this paper, the 
proposed circuit also can realize the AP filter without any 
component-matching condition and still employ the grounded 
capacitor, unlike the biquad reported in [16]. 

On the other hand, some universal voltage-mode biquads 
with multiple inputs and one output have been proposed [17]-
[24]. However, these configurations cannot be realized by 
using only grounded capacitors. Also, they suffer from either 
inverting-type input signals or component-matching conditions. 
In 2003, Chang and Chen [25] proposed a universal voltage-
mode filter with three inputs and a single output. The circuit 
has additional advantages, such as the employment of only 
grounded capacitors, no need for inverting-type input signals, 
and no need for component-matching conditions. However, it 
still suffers from orthogonal control of ωo and Q. In this paper, 
the proposed circuit has the same advantages reported by 
Chang and Chen [25] in addition to one more important 
advantage—orthogonal control of ωo and Q. The proposed 
new circuit offers the following features: (i) simultaneous 
realization of LP, BP, HP, BR, and AP responses with the 
single-input five-output or three-input two-output in the same 
configuration; (ii) the employment of all grounded capacitors; 
(iii) no need to employ inverting-type input signals; (iv) no 
need to impose component choice; (v) orthogonal control of 
the ωo and Q; and (vi) low active and passive sensitivity 
performance. In Table 1, the main features of the proposed new 
circuit are compared with those of previous works. 
 

Table 1. Summary of recent filters specifications. 

Criteria 
Circuits 

(i) (ii) (iii) (iv) (v) (vi)

The new circuit yes yes yes yes yes yes

Ref. [16] in 2007 no yes yes no yes no 

Ref. [15] in 2006 no yes yes no yes yes

Ref. [14] in 2004 no yes yes yes no yes

Ref. [13] in 2003 no yes yes yes no yes

Ref. [25] in 2003 no yes yes yes no yes

Ref. [24] in 2005 no no no yes yes no 

Ref. [23] in 2004 no no no no no no 

 
 

II. The Proposed Circuit 

The block diagram of the DVCC is shown in Fig. 1 and its 
terminal relations are given by 
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Fig. 1. Block diagram of the DVCC. 
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The proposed versatile universal voltage-mode circuit 
comprises two DVCCs, two grounded capacitors and four 
resistors, as shown in Fig. 2. The use of grounded capacitors is 
particularly attractive for integrated circuit implementation [25]. 
Derived by each nodal equation of the proposed circuit, the 
input-output relationship matrix form of Fig. 2 can be 
expressed as 
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From the above matrix form, the following five output 
voltages can be derived: 
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Fig. 2. Block diagram of the proposed versatile voltage-mode 
biquad based on DVCCs. 
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where 

 321212321
2 GGGGGsCGCCs ++=Δ .        (8) 

Depending on the status of the three biquad input voltages, 
Vi1, Vi2, and Vi3, numerous filter functions are obtained. There 
are two cases shown as follows. 

Case 1. If 032 == ii VV  and ini VV =1 , then 
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It can be seen from (9) to (13) that a BP filter response is 
obtained from Vo1, an LP filter response is obtained from Vo2, a 
BR filter response is obtained from Vo3, and two HP filter 
responses are obtained from Vo4 and Vo5, respectively. If Vi3 = 0 
and Vi1 = Vi2 = Vin, then the AP transfer function is easily 
obtained from the node of Vo3 as  
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Obviously, from (9) to (15), it can be seen that the proposed 
circuit is a universal voltage-mode filter, too. Also, (9) to (15) 
demonstrate that the BP gain constant HBP, the LP gain 
constant HLP, the BR gain constant HBP, the first HP gain 
constant HHPI, the second HP gain constant HHP2, and the AP 
gain constant HAP are given by 
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3
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G
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Case 2. The specialization of the numerators in (4) and (5) 
result in the five generic filter functions: 

 (i) lowpass: Vi3 = 0, Vi1 = Vin or Vi2 = Vin, and Vout = Vo2; 
 (ii) bandpass: Vi1 = Vi3 = 0, Vi2 = Vin, and Vout = Vo3; 
 (iii) highpass: Vi1 = Vi2 = 0, Vi3 = Vin, and Vout = Vo3; 
 (iv) bandreject: Vi2 = Vi3 = 0, Vi1 = Vin, and Vout = Vo3; 
 (v) allpass: Vi3 = 0, Vi1 = Vi2 = Vin, and Vout = Vo3. 

Note that there are not any component-matching conditions 
and inverting-type voltage input signals to realize all of the 
filter responses. In all cases the resonance angular frequency 

oω and quality factor Q are given by  
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The oω  and Q can be properly controlled by G1 and/or G2 
and G3, in that order. 

From cases 1 and 2, we can note that the proposed circuit can 
act as a universal voltage-mode with single input and five 
outputs and can realize voltage-mode BR, LP, BP, and two HP 
filter signals from the five output terminals, without any 
component-matching conditions. When another input signal is 
inserted into the circuit, the AP filter response can be easily 
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realized without any component-matching condition. On the 
other hand, it also can act as a universal voltage-mode filter 
with three inputs and two outputs and can realize five generic 
voltage-mode filter signals from the same configuration 
without any component-matching conditions and inverting-
type voltage input signals to realize all of the filter responses. 
Obviously, the filter configuration with multiple inputs and 
multiple outputs seems to be more suitable than a single input 
and multiple outputs configuration or the multiple inputs and a 
single output configuration. 

III. Effect of Non-idealities 

Equations (3) to (17) have been obtained by considering the 
ideal description of the DVCC. Ports Y1 and Y2 exhibit an 
infinite input resistance. Port X exhibits zero input resistance 
and the output ports Z1 and Z2 show an infinite output 
resistance. Practically, when implementing the active element 
using transistors, these resistances assume some finite value 
depending upon the device parameters. Similarly, the high 
frequency effects also need to be accounted for by assuming 
capacitances at these ports. The non-ideal DVCC symbol with 
various parasitic elements is shown in Fig. 3. It is shown that 
port X exhibits low-value parasitic serial resistance Rx, and 
ports Y1 and Y2 exhibit high-value parasitic resistance RY1 and 
RY2, respectively. The ports Z1 and Z2 exhibit high-value 
parasitic resistance RZ1 and RZ2 in parallel with low-value 
capacitors CZ1 and CZ2. It is to be noted that the proposed 
circuit employs resistors at the X terminals of the DVCCs; 
therefore, most of the parasitic Rx can be easily merged. 

Taking the non-idealities of the DVCC into account, the 
relationships of the terminal voltages and currents can be 
rewritten as XXYkYkX IRVsVsV +−= 2211 )()( ββ , IY1 = IY2 = 0, 

,)(11 XkZ IsI α+= ,)(22 XkZ IsI α−= where )(1 skβ represents 
the voltage transfers from the VY1 terminal to the  VX terminal 
of the k-th DVCC, )(2 skβ  represents the voltage transfers 
from VY2 terminal to VX terminal of the k-th DVCC, )(1 skα  
represents the current transfers from IX terminal to  IZ1 
terminal of the k-th DVCC, and )(2 skα  represents the 
current transfers from IX terminal to IZ2 terminal of the k-th 
 

 

Fig. 3. Blick diagram of the DVCC with its parasitic elements. 

Y1 

Y2 

Z1 

X 
Z2 

DVCC 

RX 
RY2 

RY1

RZ2 CZ2 

RZ1 CZ1

 

DVCC. Thus, )(1 skα , )(2 skα , )(1 skβ , and )(2 skβ  can 
be approximated by LP functions, which can be considered to 
have a unity value for frequencies much lower than their corner 
frequencies [3]-[7]. By assuming the circuit is working at 
frequencies much lower than the corner frequencies of 
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from the VY2 terminal to the VX terminal of the k-th DVCC, 
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terminal to IZ2 of the k-th DVCC, the denominator of the 
transfer functions becomes 
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The resonance angular frequency oω  and quality factor Q 
are obtained by 
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The low active and passive sensitivities of oω and Q are 
shown as 
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IV. Simulation Results 

Finally, to verify the theoretical prediction of the proposed 
biquad circuit, a simulation using H-Spice with a TSMC 0.25 
µm process [26] was performed. The symmetrical cascaded 
CMOS implementation of the DVCC is shown in Fig. 4 [4] 
with the NMOS and PMOS transistor aspect ratios 

)μ1μ5LW( =  and )μ1μ10LW( = , respectively. The 
supply voltages were VDD=-VSS=1.25 V, and the biasing 
voltages were VB1=-0.2 V and VB2=-0.45 V. The proposed 
circuit was designed for fo=1 MHz and Q=3.16 by choosing 
R1=R3=5 kΩ, R2=R4=50 kΩ, and C1=C2=10 pF. Figure 5 
shows the simulated amplitude responses for the BR, LP, BP, 
and two HP filters of Fig. 2 with Vi2=Vi3=0, and Vil=Vin. 
Figure 6 shows the simulated amplitude and phase responses 
for the AP filter at the output Vo3 of Fig. 2 with Vi3=0, and  
Vi1=Vi2=Vin. Figure 7 shows the simulated amplitude responses 
for the BR, LP, BP, and HP filters in case 2 of Fig. 2. As can be 
seen, there is a close agreement between theory and simulation. 
 

 

Fig. 4. CMOS implementation of DVCC. 
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Fig. 5. Amplitude–frequency responses in case 1 of Fig. 2. 
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Fig. 6. Amplitude–frequency response and phase–frequency 
response of Fig. 2 with Vi3= 0 and Vi1 = Vi2 = Vin. 
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Fig. 7. Amplitude–frequency responses in case 2 of Fig. 2. 
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V. Conclusion 

In this paper, a new universal voltage-mode filter was 
proposed. The proposed circuit can be used as either a three-
input two-output universal filter or single-input five-output 
multifunction filter with the same topology. It is more versatile 
than the universal one with a single input and multiple outputs 
or the universal one with multiple inputs and one or two 
outputs. Moreover, the proposed circuit still offers the 
following advantages: (i) the employment of two grounded 
capacitors, (ii) no need to employ inverting-type input signals, 
(iii) no need to impose component choice, (iv) orthogonal 
control of oω and Q, and (v) low active and passive sensitivity 
performance. H-Spice simulations with TSMC 0.25 µm 
process and V1.25± supply voltages confirm the theoretical 
predictions. 
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