• 제목/요약/키워드: Injection timing

검색결과 434건 처리시간 0.027초

An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine According to Variation of the Injection Timing (분사시기의 변화에 따른 제어자발화 가솔린기관의 배기특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • 제8권3호
    • /
    • pp.5-10
    • /
    • 2004
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine which has the ultra lean-burn with self-ignition of gasoline fuel can be achieved by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

A Study on the Smoke Reduction of Methanol-Diesel Engine (메탄올-디젤기관의 스모크 저감에 관한 연구)

  • Han, Seong-Bin;Mun, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권7호
    • /
    • pp.2421-2429
    • /
    • 1996
  • The objective of this research is to apply effect of the pre-mixed combustion quantity and smoke emission in diesel engine. According as air fuel ratio is increased, emission of smoke concentration is linearly reduced. As Injection timing is advanced, smoke concentration is remarkably reduced. It is considered to be the primary cause of the increase in the premixed combustible mixture during long ignition delay period with advancing injection timing. Smoke is increased with increasing engine speed, so it is considered to be the primary cause of the increase of the mass of fuel injected. Smoke is decreased according to the increase of methanol volume ratio. It is considered that the primary cause of the increase in the quantity of pre-mixed combustion.

The Effect of Combustion Chamber Shape on the Performance of Swirl Chamber in Diesel Engine (I) (와류실식 소형 디젤 기관의 연소실 형상이 기관 성능에 미치는 영향(I))

  • Ra, J.H.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • 제2권2호
    • /
    • pp.27-34
    • /
    • 1998
  • The purpose of this study is to investigate the performance of swirl combustion chamber diesel engine by changing the jet passage area and its angle, the depth and shape of the piston top cavity(main chamber). The performance of diesel engine with newly changed swirl combustion chamber was tested through the experimental conditions as engine speed, load and injection timing etc. The test results were compared and analyzed. The rate of fuel consumption was affected significantly by the jet passage area at the high speed and load, by the depth of the piston top cavity at the low speed and load. The exhaust smoke density and exhaust gas temperature depended sensitively on variation of the injection timing rather than the shape of the combustion chamber within the experimental conditions.

  • PDF

Parametric Study for Reducing NO and Soot Emissions in a DI Diesel Engine by Using Engine Cycle Simulation (직분식 디젤엔진에서 엔진 매개변수들이 NO 및 soot 배출에 미치는 영향에 대한 수치해석 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제10권5호
    • /
    • pp.35-44
    • /
    • 2002
  • Engine cycle simulation using a two-zone model was performed to investigate the effect of the engine parameters on NO and soot emissions in a DI diesel engine. The present model was validated against measurements in terms of cylinder pressure, BMEP, NO emission data with a 2902cc turbocharger/intercooler DI diesel engine. Calculations were made for a wide range of the engine parameters, such as injection timing, ignition delay, Intake air pressure, inlet air temperature, compression ratio, EGR. This parametric study indicated that NO and soot emissions were effectively decreased by increasing intake air pressure, decreasing inlet air temperature and increasing compression ratio. By retarding injection timing, increasing ignition delay and applying EGR. NO emission was effectively reduced, but the soot emission was increased.

Development of Electronic Control Fuel Injection and Spark Timing Controller for Automobile Engine (자동차 기관용 전자제어 연료분사 및 점화시기 제어기 개발)

  • Kim, T.H.;Min, G.S.;Yang, S.H.;Jang, H.S.
    • Journal of the Korean Society of Safety
    • /
    • 제10권4호
    • /
    • pp.22-35
    • /
    • 1995
  • In this paper, an electronic control unit is developed using 16bit microcomputer for automobile engine. This system incorporate AFS(Air Flow Sensor) of Hot Wire type, DIS(Direct Ignition System), ISC(Idle Speed Control) system, CAS(Cranke Angle Sensor) and other peripheral device. This system includes hardware and software to facilitate precision control of both fuel injection and ignition timing. Especially, this controller consists of position signal(180 teeth) and 4 REF signals. Present system has maximum $720^{\circ}CA$ delay. But this system has maximum $180^{\circ}CA$. Thus, this system is able to precision control both fuel injection and ignition timing.

  • PDF

A study on Combustion and Exhaust Emission of Diesel Engine (디젤기관의 연소와 배출물에 관한 연구)

  • 조진호;김형섭;박정률
    • Journal of the korean Society of Automotive Engineers
    • /
    • 제13권5호
    • /
    • pp.81-88
    • /
    • 1991
  • Combustion characteristic, concentration of NOx and exhaust smoke opacity was experimentally tested, according to fuel injection timing, mixing ratio of water and methanol for the driving condition of 2000 rpm of engine revolution and constant load(7.5kg/cm$^{2}$) using emulsified fuel of gas oil-water methanol. The result obtained was as following. Thermal efficiency indicated highly 0.4-2.7% for emulsified fuel then gas oil, and injection timing when maximum thermal efficiency, slicily risen then gas oil. For constant fuel injection timing ignition lag was increased, combustion duration decreased, maximum heat release rate indicated high, and concentration of NOx and exhaust smoke opacity is decreased, as function of water and methanol content y was higher.

  • PDF

A Study on the Emission Characteristics of NOx in Medium Speed Diesel Engine (중속 디젤기관의 질소산화물 배출특성에 관한 연구)

  • 우석근;윤건식;윤영환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.526-534
    • /
    • 2000
  • In this study, the characteristics of exhaust emissions in medium speed diesel engine under various operating conditions were investigated through experiments to derive the optimum conditions for minimizing the exhaust emissions, especially, nitrogen oxides. The 355 KW$\times$1200 rpm medium speed diesel engine was intensively examined to investigate the trend of exhaust emissions in case that the parameters affecting combustion conditions such as fuel injection timing, intake air temperature and pressure, engine speed and load were changed. The exhaust emissions for 9 sets of medium speed diesel engine were analyzed in addition. From this study, NOx level could be reduced by 30~50% through the adjustment of retarded fuel injection timing, lowered intake air temperature and increased charging air pressure.

  • PDF

A Study on Engine Performance Characteristics with Scavenging Condition Variation in 2-Stroke Diesel Engine (2행정 디젤엔진의 소기조건 변화에 따른 엔진의 성능특성에 관한 연구)

  • Kim, Gi-Bok
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제22권3호
    • /
    • pp.259-264
    • /
    • 2019
  • In this study, we experiment by making and designing of compression ignition diesel engine witch has air cooling, 2-cylinder and 2-strokes. Also, we make controller witch can control injection timing and period by arbitrary manual operation for change of injection timing. We also study experimentally in change about pressure and power of combustion chamber by increasing density of air which comes into cylinder because of increasing scavenging pressure. Through this, we confirmed that output change and scavenging pressure can develop performance of the engine by scavenging efficiency of a chamber and development of volume efficiency.

A Study on Combustion and Exhaust Emission in Direct Injection Diesel Engine (직접분사식 디젤기관의 연소 및 배기에 관한 연구)

  • Kim, Du-Beom;Kim, Gi-Bok;Kim, Chi-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • 제20권2호
    • /
    • pp.105-113
    • /
    • 2017
  • Recently the direct injection diesel engine is the most efficient one available for road vehicles, so this fundamental advantage suggests the compression injection diesel engine are a wise choice for future development efforts. The compression ignition diesel engine, with its bigger compression ratios if compared to the SI engine, offers a higher thermodynamic efficiency, also additionally the diesel engine with its less pumping losses due to the throttled intake charge as in a SI engine has higher fuel economy. But the largest obstacle to the success of this engine is meeting emission standards for Nitric oxides and particulate matter while maintain fuel consumption advantage over currently available engines. Thus its use should be largely promoted, however, diesel engine emits more Nitric oxides and particulate matter than other competing one. There has been a trade-off between PM and NOx, so efforts to reduce NOx have increased PM and vice versa, but trap change this situation and better possibility emerge for treating NOx emission with engine related means, such as injection timing, equivalence ratio, charge composition, and engine speed. The common rail direct injection system is able to adjust the fuel injection timing in a compression ignition engine, so this electronically controlled injection system can reduce the formation of NOx gas without increase in soot. In this study it is designed and used the engine test bed which is installed with turbocharge and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제12권4호
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.