• Title/Summary/Keyword: Initial estimate

Search Result 932, Processing Time 0.023 seconds

NAVIER-STOKES EQUATIONS IN BESOV SPACE B-s,(ℝn+)

  • Jin, Bum Ja
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.771-795
    • /
    • 2013
  • In this paper we consider the Navier-Stokes equations in the half space. Our aim is to construct a mild solution for initial data in $B^{-\alpha}_{{\infty},{\infty}}(\mathbb{R}^n_+)$, 0 < ${\alpha}$ < 1. To do this, we derive the estimate of the Stokes flow with singular initial data in $B^{-\alpha}_{{\infty},q}(\mathbb{R}^n_+)$, 0 < ${\alpha}$ < 1, 1 < $q{\leq}{\infty}$.

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR

  • CHO, HONG RAE;LEE, HAN-WOOL;CHO, EUNSUNG
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • We consider the initial value problem of the Schrodinger equation for an interesting Cauchy-Euler type operator ${\mathfrak{R}}$ on ${\mathbb{C}}^n$ that is an analogue of the harmonic oscillator in ${\mathbb{R}}^n$. We get an appropriate $L^1-L^{\infty}$ dispersive estimate for the solution of the initial value problem.

Comparison of parameter estimation methods for normal inverse Gaussian distribution

  • Yoon, Jeongyoen;Kim, Jiyeon;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.97-108
    • /
    • 2020
  • This paper compares several methods for estimating parameters of normal inverse Gaussian distribution. Ordinary maximum likelihood estimation and the method of moment estimation often do not work properly due to restrictions on parameters. We examine the performance of adjusted estimation methods along with the ordinary maximum likelihood estimation and the method of moment estimation by simulation and real data application. We also see the effect of the initial value in estimation methods. The simulation results show that the ordinary maximum likelihood estimator is significantly affected by the initial value; in addition, the adjusted estimators have smaller root mean square error than ordinary estimators as well as less impact on the initial value. With real datasets, we obtain similar results to what we see in simulation studies. Based on the results of simulation and real data application, we suggest using adjusted maximum likelihood estimates with adjusted method of moment estimates as initial values to estimate the parameters of normal inverse Gaussian distribution.

Initial Rotor Position Estimation of an IPMSM Based on Least Squares Approximation with a Polarity Identification (극성 판별이 가능한 최소 제곱법 기반의 IPMSM 회전자 초기 위치 추정)

  • Kim, Keon Young;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.72-75
    • /
    • 2018
  • An initial rotor position estimation method is proposed in this study for an interior permanent-magnet synchronous motor without a resolver or an absolute encoder. This method uses least squares approximation to estimate the initial rotor position. The magnetic polarity is identified by injection of short pulses. The proposed estimation process is robust because it does not require complex signal processing that depends on the performance of a digital filter. In addition, it can be applied to various servo systems because it does not require additional hardware. Experimental results validate the effectiveness of the proposed method using a standard industrial servomotor with interior-permanent magnets.

Simple Estimation Scheme for Initial Rotor Position and Inductances for Effective MTPA-Operation in Wind-Power Systems using an IPMSM

  • Kang, Yi-Kyu;Jeong, Hea-Gwang;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.396-404
    • /
    • 2010
  • This paper presents simple schemes used to estimate the initial rotor position and the d- and q-axis inductances for effective Maximum Torque per Ampere (MTPA) operation in a wind-power system using an IPMSM (Interior Permanent Magnet Synchronous Machine). An IPMSM essentially requires an exact coordinate transformation and accurate inductance values to use a reluctance torque caused by the saliency characteristic. In the proposed high-frequency voltage testing method, there is no voltage drop caused by the resistance and the electromotive force. The initial rotor position and the inductance can be measured through an analysis of the stator current without turning the rotor. The experimental results are presented in order to illustrate the feasibility of the proposed method.

Development of Estimation Algorithm of Latent Ability and Item Parameters in IRT (문항반응이론에서 피험자 능력 및 문항모수 추정 알고리즘 개발)

  • Choi, Hang-Seok;Cha, Kyung-Joon;Kim, Sung-Hoon;Park, Chung;Park, Young-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.465-481
    • /
    • 2008
  • Item response theory(IRT) estimates latent ability of a subject based on the property of item and item parameters using item characteristics curve(ICC) of each item case. The initial value and another problems occurs when we try to estimate item parameters of IRT(e.g. the maximum likelihood estimate). Thus, we propose the asymptotic approximation method(AAM) to solve the above mentioned problems. We notice that the proposed method can be thought as an alternative to estimate item parameters when we have small size of data or need to estimate items with local fluctuations. We developed 'Any Assess' and tested reliability of the system result by simulating a practical use possibility.

ESTIMATING COSTS DURING THE INITIAL STAGE OF CONCEPTUAL PLANNING FOR PUBLIC ROAD PROJECTS: CASE-BASED REASONING APPROACH

  • Seokjin Choi;Donghoon Yeo;Seung H. Han
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1183-1188
    • /
    • 2009
  • Estimating project costs during the early stage of conceptual planning is very important when deciding whether to approve the project and allocate an appropriate budget. However, due to greater uncertainties involved in a project, it is challenging to estimate costs during this initial stage within a reasonable tolerance. This paper attempts to develop a cost-estimate model for public road projects under these circumstances and limitations. In the conceptual planning stage of a road project, there is only limited information for cost estimation, for example, such input data as total length of the route, origin and destination, number of lanes, general geographic characteristics of the route, and other basic attributes. This implies that the model should individuate suitable but restricted information without considering detailed features such as quantity of earthwork and a detailed route of a given condition. With these limited facts, this paper applies a case-based reasoning (CBR) method to solve a new problem by deriving similar past problems, which in turn is used to estimate the cost of a given project based on best-fitted previous cases. To develop a CBR cost-estimate model, the authors classified 8 representative variables, including project type, the number of lanes, total length, road design grades, etc. Then, we developed the CBR model, primarily by using 180 actual cases of public road projects, procured over the last decade. With the CBR model, it was found that the degree of error in estimation can be reasonably reduced, to below approximately 30% compared to the final costs estimated upon the completion of detailed design.

  • PDF

Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result (피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 초기 연결강도 의존성 개선)

  • Park, Sol-Ji;Joo, No-Ah;Park, Hyun-Il;Kim, Young-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.456-463
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by in-situ test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network(NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network(CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

  • PDF

Initial Pole Position Estimation Algorithm of a Z-Axis PMLSM (Z축 선형 영구자석 동기전동기의 초기 자극위치 추정 알고리즘)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2008
  • This paper deals with the estimation method on the initial pole position of a z-axis permanent magnet linear synchronous motor(PMLSM) without magnetic pole sensors such as Hall sensors. The proposed method takes account of the gravitational force at z-axis and also the load conditions. The algorithm consists of two steps. The first step is to approximately estimate the initial q-axis by monitoring the movements due to the test current at predefined different test q-axes. The second step is to estimate the real q-axis as accurately as possible by using the outputs corresponding to torques due to the test current at three different test q-axes in order to avoid the effect of load mass variations. Experimental results on the z-axis PMLSM show good estimation characteristics of the proposed method irrespective of load mass conditions.

GLOBAL MAXIMAL ESTIMATE TO SOME OSCILLATORY INTEGRALS

  • Niu, Yaoming;Xue, Ying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.533-543
    • /
    • 2018
  • Under the symbol ${\Omega}$ is a combination of ${\phi}_i$ ($i=1,2,3,{\ldots},n$) which has a suitable growth condition, for dimension n = 2 and $n{\geq}3$, when the initial data f belongs to homogeneous Sobolev space, we obtain the global $L^q$ estimate for maximal operators generated by operators family $\{S_{t,{\Omega}}\}_{t{\in}{\mathbb{R}}}$ associated with solution to dispersive equations, which extend some results in [27].