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GLOBAL MAXIMAL ESTIMATE TO
SOME OSCILLATORY INTEGRALS

YAOMING NIU AND YING XUE

ABSTRACT. Under the symbol Q2 is a combination of ¢; (i = 1,2,3,...,n)
which has a suitable growth condition, for dimension n = 2 and n > 3,
when the initial data f belongs to homogeneous Sobolev space, we obtain
the global L? estimate for maximal operators generated by operators
family {S¢ q}+er associated with solution to dispersive equations, which
extend some results in [27].

1. Introduction and main results

Assume that Q is a continuous real-valued functions in R™. Let f be a
Schwartz function in S(R™) and

Siaf(x) =u(z,t) = (2m)™" / e A feyde,  (x,t) € R™ x R.
Here f denotes Fourier transform of f defined by f(f) = Jan e~ f(z)dx.
Define the global maximal operator associated with the family of operators
{St,Q}te]R by
S& fx) = suﬂg |St.af(z)], =eR™
te

We recall the homogeneous Sobolev space H*(R™) (s € R) which is defined by

Ao = {r e s @)l = ([ Iflzslf(ﬁ)IQdﬁ)l/Q <oaf.

and the inhomogeneous Sobolev space H*(R") (s € R) , which is defined by
X 1/2
wo@) = {7 eS®): Ifla = ([ a+ieprifors) <o},
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Here, S’(R™) denotes the space of tempered distributions.
In this paper, we will discuss the global estimate

(L.1) 156" Fllagrny < Cllflligs (rny-
In case Q(&) = |£|*, the maximal estimates (1.1) have been well studied
associated with the following oscillatory integral:
1

Staf(x) = / e”'gemg'af(f)df, teR and a > 1,

2m)" Jr
which is the solution of the fractional Schrédinger equation:

(1.2) { i0pu + (—A)*2u = 0, (z,t) € R" x R,
’ u(z,0) = f(z).
Moreover, the global estimate (1.1) and related questions have been well studied
in literature, see e.g. Carbery [3], Kenig and Ruiz [16], Kenig, Ponce and Vega
[15], Rogers and Villarroya [23], Rogers [21], Sj6lin [24-29], and so on.
In particular, if Q(¢) = |£|?, then u is the solution of the Schrédinger equa-
tion

(1.3) u(z,0) = f(z).

In 1979, Carleson [4] proposed a problem: if f € H*(R™) for which the optimal
s such that

(1.4) 7}i_r)r(l)u(:c,t) = f(x), ae. x€R".

{ 10 — Au = 0, (z,t) e R™ x R,

When spatial dimension n = 1, the pointwise convergence (1.4) is true if

and only if s > 1, (see [4], and [7]). In spatial dimension n > 3, Bourgain [1]

showed that (1.4) holds for s > 2 — L and he also showed that the necessary

-,
condition of convergence (1.4) is s > % — % when n > 4. Recently, when n > 2,

Luca, Rogers in [20] and Demeter, Guo in [8] improved above result and proved

that (1.4) can fail if s < 303y - Moreover, when n > 2, Bourgain in [2] showed
that (1.4) fails if s < % Recently, in spatial dimension n = 2, Du, Guth, Li

[11] showed that (1.4) holds for data in H*(R?) with s > §, which is sharp up
to the endpoint. For more results on the convergence (1.4) when f € H*(R").
See [19,24,30-32], for example.

Ifn =2 &= (&,8) and Q(€) = € — €2, then u is the solution of the
nonelliptic Schrodinger equation
{ iou= 54— 0%, (z,t) €R? xR,

u(z,0) = f(z).

In 2006, to discuss the pointwise convergence problem on the solution of
nonelliptic Schrédinger equation (1.5), Rogers, Vargas and Vega [22] obtained
the following results of global estimate (1.1) for nonelliptic Schrodinger equation
(1.5).

(1.5)
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Theorem A ([22]). Assume that n = 2 and Q(§) = & — £3. Then the global
estimate (1.1) holds for s = 5 and q = 4.

In 2007, Sjolin [27] extended Theorem A and obtained the following results.

Theorem B ([27]). (i) Assume thatn =2 and Q&) = |&1]|*+|&2|%, where
a > 1. Then the global estimate (1.1) holds for% <s<landq= %_s;

(ii) Assume thatn >3 and Q&) = |&1]* £ [&2|* £ [€3]% £ |€a]* - - - £ €)%,
where & = (£1,&2,...,&,) and a > 1. Then the global estimate (1.1)

holds for 3 < s < %5 and q= 2n

n—2s’

Assume ¢ : RT — R satisfies the following growth conditions:

(H1) There exists m; > 1, such that |¢/(r)| ~ r™ =1 and |¢"(r)] = r™1—2
forall 0 < r < 1;

(H2) There exists ma > 1, such that |¢/(r)| ~ r™2~1 and |¢"(r)| = rm2—2
for all r > 1;

(H3) Either ¢"(r) > 0 or ¢ (r) < 0 for all » > 0.

In the present paper, we will consider the global maximal estimates for
generalized oscillatory integral when symbol 2 is a combination of some ¢.
Now we state our main results as follows.

Theorem 1.1. Assume that n = 2 and Q&) = ¢1(|&1]) £ P2(|&2]), where
o (1 = 1,2) satisfies (H1)~(H3). Then the global estimate (1.1) holds for

1 _ 2
5<s<landq=1=.

Theorem 1.2. Assume that n > 3 and Q&) = ¢1(&1]) £ p2(|€2]) £ ¢3(]&3]) =
ot dn(|€n]), where ¢; (i =1,2,3,...,n) satisfies (H1)~(H3). Then the global
estimate (1.1) holds for 2 < s < % and q = 2%

n—2s"

Remark 1.1. We recall that
Staf(@) =u(w,t) = (2m) " [ WO e, (@0) € B xR

n

As a consequence, when ) satisfies conditions in Theorem 1.1 (n = 2) or
Theorem 1.2 (n > 3), if f € H*(R") and s > %, we have
(1.6) lim u(z,t) = f(x), a.e. x€R™

t—0

In fact, by a standard argument, for f € H*(R™), the pointwise convergence
(1.6) follows from the local estimate

(1.7) 1SallLa@ny < Clflae@ny), f€H(R™)

for some ¢ > 1 and s € R. Here B" is the unit ball centered at the origin in

R™ and the local maximal operator S, associated with the family of operators
{St,0}ter defined by

Sof(x) = S |Siaf(z)], xeR™
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Remark 1.2. Notice that
(e, t) = ) (o) = (2m) [ emeneled fe)ag

is the formal solution of the following generalized dispersive equation:

0+ o(vV—A)u =0, (z,t) € R" x R,
(1.8) n

’U,(LZJ,O) :f(x)v fES(R )7
where ¢(v/—A) is a pseudo-differential operator with symbol ¢(|¢]). Many
dispersive equation can be reduced this type. For instance, the half-wave equa-
tion (¢(r) = r), the fractional Schrodinger equation (¢(r) =r* (0 < a,a # 1)),
the Beam equation (¢(r) = v/1+ r#), Klein-Gordon or semirelativistic equa-
tion (¢(r) = V14 1r2), iBq (é(r) = rv1+72), imBq (o(r) = ﬁ) and the
fourth-order Schrodinger equation (¢(r) = r2 + r%) (see [5,6,9,12-14,17,18]
and references therein).

Remark 1.3. There are many elements ¢ satisfying the conditions (H1)~(H3),
for instance, r® (a > 1), (1+72)% (a > 1), V1 + 7%, r24+7% r/1 +r2 and so on.
Moreover, the results of Theorem 1.1 and Theorem 1.2 can be applied to symbol
Q2 is a combination of ¢; (i =1,2) or (i =1,2,3,...,n), where ¢;(|&|) = |&|%,
o> 1, 6i(&D) = 6P + Il i(l6l) = VIFIER, 6:(1&]) = &2 + &7, or
?i(|&]) = 1&[/1 + |€:]?, and so on. Hence, Theorem 1.1 and Theorem 1.2 are
an extension of Theorem A and Theorem B, respectively.

This paper is organized as follows. The proofs of Theorem 1.1 and Theorem
1.2 are given in Section 2 and Section 3, respectively.

2. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we need an important
lemma (i.e., Lemma 2.1 below), which plays a key role in proving Theorem 1.1.

Lemma 2.1. Assume ¢ satisfies (H1)~(H3) with mq > 1, mg > 1, % <s<1,
and p € C§°(R). Then

iwetito (€D ¢~y (S ) ge| < 0t
L €154 < O
forx e R\ {0}, t e R and N =1,2,3,.... Here the constant C may depend
on s, m1, mg and p but not on x, t or N.

Proof. The proof of Lemma 2.1 is similar to that of Lemma 2.1 in [10]. Here,
we omit the proof of Lemma 2.1. O

Proof of Theorem 1.1. Let t(z) be a measurable function on R? with ¢(x) € R.
Assume that n = 2, Q&) = ¢(|&1]) £ #(|&|), where ¢; (i = 1,2) satisfies
(H1)~(H3). We set

Sf(x) = /R SO fe)de, xR f € S(RY)
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For % <s<landgq= %, by linearising the maximal operator to prove the
global estimate (1.1) it suffices to prove that

R 1/2
20 ISl < Ol = [ 1)
For f € S(R?), notice that

R 1/2 R 1/2
( / §1|S|£zlsf(§)l2d§> s( / |£25|f(§)l2d£> .
R2 R2

Thus to prove (2.1) it suffices to prove that

. 1/2

22 151 < ([ lallerifera)
R2

Let g(¢) = [&1]5 &

23) @)= [ @m0l g ged = Ro(o)

3 f(€), and then we have

where
Ro(w) = [ €016 | g(e)as.
R2
Thus, by (2.3), to prove (2.2) it suffices to prove that
(2.4) IRyl a2y < Cllgll2z2)

for g which is a continuous and rapidly decreasing at infinity function.

We take a real-valued function p € C§°(R?) such that p(z) = 1 if |z| < 1,
and p(x) = 0 if |z| > 2. And we choose a real-valued function ¢ € C§°(R) such
that $(z) = 1if [o] < 1, and ¥(x) = 0 if [a] > 2, and set o(€) = H(E)V(Es).
For ¢ € R? and for N = 1,2,3,..., we set pn(z) = p(Z) and on(£) = (%)
For z € R?, g € L*(R?), and for N = 1,2,3,..., the operator Ry is defined by

Rug(z) = pn(x) / DN ¢ |56, Sy (€)g(£)dE.

R2

The adjoint of Ry is given by

Ryg(§) = on(€)l&a| 72162 /R e em MDY py (2) () da,
¢ cR?, he L*R?).
To prove (2.4) it suffices to prove that
(255) IBNglLare) < Cllgllze®e).-
By duality, show (2.5) it suffices to show that
(2.6) [RNRl2®e) < Cllbll e g2y, N =1,2,3,...,
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1 1 _ :
where sta=1 Since
IRy = [ Rach(© e

- [ Bh @R

_ / O—N(5>2|£1|-852|—s( / e—iw-fe—iﬂwm@pN<x>h<x)dx>
R2 R2

x ( / eV et o (y )h()dy> d¢

— [ [ ([l igreeomeum-cemme sy ga)

x pn (@) pn (y)h(x)h(y)dady

(27) = [, | Entemon@on bl

where

Kn(z,y) = /2 61| || (@1 =61 +(2-22)62) it N G(61]) i(Hw) 1) (1€21)
R

w5y 52 e

(2.8) = </Rgl|sei(ylmsleiu(y)t<w>>¢(|sl>¢(§\1[)2d&>

X (/ |§2|sei(yz12)516:|:7J(t(y)t(z))¢(|§2|)¢(§\27)2d§2)'
R

Since % < s < 1, using Lemma 2.1, we obtain
1 1

2.9 Kn(z,y)| <C .
(29) e
We set )

Plf(ffl»@):/Rmf(yh@)dyh
and

Pyf(x1,20) = / ! f(z1,y2)dys.

R |22 — Yo' 7*
Thus, by (2.7) and (2.9), we obtain

/\R’Nh(a:)|2dx

1 1
SC// h(z)||h(y)|dzd
lzy — o1 |ts |x2—y2\1*5| (@)[|h(y)] Y

1 1
ZC// </ h(y1,ya)|d )d h(z)|dx
|22 — yo|1—° |x1—y1|1—8| (y1,y2)|dyr | dya|h(x)]
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(2.10) = C/Rz PyPy|h|(2)|h(x)|da

By (2.10) and invoking Holder’s inequality, we get

(2.11) /Rz |Riyh(z)|*dz < C||PaPrlhll|La@e) |7l Lo ma).
where ¢ = 133’ q = 1-2+s and % < s < 1. Denote I, the Riesz potential of order

o, which is defined by
f(v)
I = .
AN = [ Loa

Applying the fact I, is bounded from L7 (R) to L?(R), we have

(212) ([ |Pjh<x>|dej)l/q <c(/ |h<m>q’dxj)1/q/,

where j = 1,2. By (2.12) and Minkowski’s inequality, we have
(2.13) [1P2Pr || Laez) < CllA Lo g2y,

where using the fact ¢ = —2 and % = % — 8. Therefore, (2.6) follows from

1+s
(2.11) and (2.13). Now we complete the proof of Theorem 1.1.

3. The proof of Theorem 1.2

Let t(x) be a measurable function on R™ with ¢(z) € R. Assume that n > 3,
() = 61 (1ea]) £ Da((6a]) £ Ds([Es]) £+ bn((&al), where g (i = 1,2,3,...,7)
satisfies the conditions (H1)~(H3). We will show that the global estimate (1.1)
holds for 7 <5 < 5 and q = 2n_ We set

n—2s°

Sfa) = [ w0, we R fe SR,

n n _ 2n
For 1 <s < % and q = .75,

global estimate (1.1) it suffices to prove that

by linearising the maximal operator to prove the

2s

" |82

2s 2s
n n

R 1/2
B Isfluay <o [ la flepa)

Let g(€) = |&1] 7 |€2] 7 - - [€nl7 f(€), then we have

s

3:2) Sfla)= [ NG T | E g~ g(ds = Rao)
where

Ry(x) :/ eim~£eit(r)ﬂ(£)|§1|—%
To prove (3.1) it Sufﬁc;s to prove that
(3.3) RgllLany < Cllgllz2@n)

for g is a function of continuous and rapidly decreasing at infinity.

Lo T - €| TR F(€)dE.
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Let p € C§°(R™) be a real-valued function such that p(z) =1 if || < 1 and
plx) = 01if |z| > 2. Also let ¢ € C§°(R) be a real-valued function such that
P(x) =11if |z] <1 and ¢(x) = 0if |z] > 2. For £ = (£1,&2,...,&,) € R™, we
set 0(&) = ¥(&)Ww(&) - ¥(&,). Thus, for z € R*, £ € R" and N =1,2,3,...,
we set py(z) = p(Z) and on(§) = o(%). For z € R?, g € L*(R"), and
N =1,2,3,..., the operator Ry is defined by

Ryg(x) = pn (@) / eI ¢ |~ F gy~ F €| " F o (€)g(€)dE

n

The adjoint of Ry is given by
N9(&) = on (€] (€| - [€a T / e~ TN py (2)h(x) de,

¢eR™, he L*R").
To prove (3.3) it is sufficient to prove that

(3.4) [BngllLa@ny < Cllgllpzgn)-
By duality, prove (3.4) it suffices to prove that
(3.5) IRy Al L2@n) < ClIAN Lo (g
where % + % = 1. A similar calculation as (2.7) in proof of Theorem 1.1, we
have

IRk = [ IR P
(3.6) e

= [ Ent.nos@ox b iGdsds

where
(3.7)

G5 || I E LW (A 5 (£)24.

_ 2s
KN@:,y):/R 6|3

Since § < s < 7, it follows that % < % < 1, thus, by Lemma 2.1 |, we obtain

1 1 1
(38) |KN(‘T7y)| § C 1—2s 1—2s8 1—2s°
R T e E PR ] T C S T4 R
We set
1
Pif(.l?l,l‘g,...,xn):/|xy|1_23f(l‘l,...,xi_l,yi,xH_l,...,l‘n)dyi,
R [Ty —Yi|~ n

1 =1,2,...,n. Thus, by (3.6) and (3.8), we obtain
(3.9)
[ 1Rtz P

1 1 1
= C/n / T e e
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1 1 1
—C — e —
rr \ Jr JR R|Tn —Yn|' =™ |Tno1 — Ynaa|' ™™ |y — ol ™™

1
X (/ 1f_,sIh(y1,z/27...,yn)dy1>dyz~-~dyn1dyn>|h(rf)ldﬁc
R [Ty — ]

=C | P,P,_1-- PyPi|h|(x)|h(z)|dz.
R’n

Invoking Holder’s inequality, we get

(3.10) /R |Riyh(€)1?dé < C||PuProi - PoPrlbl || Loqen) |2l Lo en)-
Since ¢ = n2_"28, it follows that ¢’ = nf_”% and the fact % = % - 2—; Similar to

estimate (2.12), we have

(3.11) ([ |Pjh<x>|dej)l/q <c(/ |h<m>q’dxj)1/q,,

where j = 1,2,...,n. By (3.11) and Minkowski’s inequality, we have
(312) ||PnPn71 s P2P1|h‘||Lq(Rn) S C||h||qu(R7L).

Therefore, (3.5) follows from (3.10) and (3.12). Now we complete the proof of
Theorem 1.2.
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