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GLOBAL MAXIMAL ESTIMATE TO

SOME OSCILLATORY INTEGRALS

Yaoming Niu and Ying Xue

Abstract. Under the symbol Ω is a combination of φi (i = 1, 2, 3, . . . , n)
which has a suitable growth condition, for dimension n = 2 and n ≥ 3,

when the initial data f belongs to homogeneous Sobolev space, we obtain

the global Lq estimate for maximal operators generated by operators
family {St,Ω}t∈R associated with solution to dispersive equations, which

extend some results in [27].

1. Introduction and main results

Assume that Ω is a continuous real-valued functions in Rn. Let f be a
Schwartz function in S(Rn) and

St,Ωf(x) = u(x, t) = (2π)−n
∫
Rn

eix·ξ+itΩ(ξ)f̂(ξ)dξ, (x, t) ∈ Rn × R.

Here f̂ denotes Fourier transform of f defined by f̂(ξ) =
∫
Rn e

−iξ·xf(x)dx.
Define the global maximal operator associated with the family of operators
{St,Ω}t∈R by

S∗∗Ω f(x) = sup
t∈R
|St,Ωf(x)|, x ∈ Rn.

We recall the homogeneous Sobolev space Ḣs(Rn) (s ∈ R) which is defined by

Ḣs(Rn) =

{
f ∈ S ′(Rn) : ‖f‖Ḣs =

(∫
Rn

|ξ|2s|f̂(ξ)|2dξ
)1/2

<∞
}
,

and the inhomogeneous Sobolev space Hs(Rn) (s ∈ R) , which is defined by

Hs(Rn) =

{
f ∈ S ′(Rn) : ‖f‖Hs =

(∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ
)1/2

<∞
}
.
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Here, S ′(Rn) denotes the space of tempered distributions.
In this paper, we will discuss the global estimate

(1.1) ‖S∗∗Ω f‖Lq(Rn) ≤ C‖f‖Ḣs(Rn).

In case Ω(ξ) = |ξ|a, the maximal estimates (1.1) have been well studied
associated with the following oscillatory integral:

St,af(x) =
1

(2π)n

∫
Rn

eix·ξeit|ξ|
a

f̂(ξ)dξ, t ∈ R and a > 1,

which is the solution of the fractional Schrödinger equation:{
i∂tu+ (−∆)a/2u = 0, (x, t) ∈ Rn × R,
u(x, 0) = f(x).

(1.2)

Moreover, the global estimate (1.1) and related questions have been well studied
in literature, see e.g. Carbery [3], Kenig and Ruiz [16], Kenig, Ponce and Vega
[15], Rogers and Villarroya [23], Rogers [21], Sjölin [24–29], and so on.

In particular, if Ω(ξ) = |ξ|2, then u is the solution of the Schrödinger equa-
tion {

i∂tu−∆u = 0, (x, t) ∈ Rn × R,
u(x, 0) = f(x).

(1.3)

In 1979, Carleson [4] proposed a problem: if f ∈ Hs(Rn) for which the optimal
s such that

lim
t→0

u(x, t) = f(x), a.e. x ∈ Rn.(1.4)

When spatial dimension n = 1, the pointwise convergence (1.4) is true if
and only if s ≥ 1

4 , (see [4], and [7]). In spatial dimension n ≥ 3, Bourgain [1]

showed that (1.4) holds for s > 1
2 −

1
4n , and he also showed that the necessary

condition of convergence (1.4) is s ≥ 1
2 −

1
n when n ≥ 4. Recently, when n ≥ 2,

Lucà, Rogers in [20] and Demeter, Guo in [8] improved above result and proved
that (1.4) can fail if s < n

2(n+2) . Moreover, when n ≥ 2, Bourgain in [2] showed

that (1.4) fails if s < n
2(n+1) . Recently, in spatial dimension n = 2, Du, Guth, Li

[11] showed that (1.4) holds for data in Hs(R2) with s > 1
3 , which is sharp up

to the endpoint. For more results on the convergence (1.4) when f ∈ Hs(Rn).
See [19,24,30–32], for example.

If n = 2, ξ = (ξ1, ξ2) and Ω(ξ) = ξ2
2 − ξ2

1 , then u is the solution of the
nonelliptic Schrödinger equation{

i∂tu = ∂2u
∂x2

2
− ∂2u

∂x2
1
, (x, t) ∈ R2 × R,

u(x, 0) = f(x).
(1.5)

In 2006, to discuss the pointwise convergence problem on the solution of
nonelliptic Schrödinger equation (1.5), Rogers, Vargas and Vega [22] obtained
the following results of global estimate (1.1) for nonelliptic Schrödinger equation
(1.5).
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Theorem A ([22]). Assume that n = 2 and Ω(ξ) = ξ2
1 − ξ2

2 . Then the global
estimate (1.1) holds for s = 1

2 and q = 4.

In 2007, Sjölin [27] extended Theorem A and obtained the following results.

Theorem B ([27]). (i) Assume that n = 2 and Ω(ξ) = |ξ1|a±|ξ2|a, where
a > 1. Then the global estimate (1.1) holds for 1

2 ≤ s < 1 and q = 2
1−s ;

(ii) Assume that n ≥ 3 and Ω(ξ) = |ξ1|a ± |ξ2|a ± |ξ3|a ± |ξ4|a ± · · · ± |ξn|a,
where ξ = (ξ1, ξ2, . . . , ξn) and a > 1. Then the global estimate (1.1)
holds for n

4 ≤ s <
n
2 and q = 2n

n−2s .

Assume φ : R+ → R satisfies the following growth conditions:

(H1) There exists m1 > 1, such that |φ′(r)| ∼ rm1−1 and |φ′′(r)| & rm1−2

for all 0 < r < 1;
(H2) There exists m2 > 1, such that |φ′(r)| ∼ rm2−1 and |φ′′(r)| & rm2−2

for all r ≥ 1;
(H3) Either φ′′(r) > 0 or φ′′(r) < 0 for all r > 0.

In the present paper, we will consider the global maximal estimates for
generalized oscillatory integral when symbol Ω is a combination of some φ.
Now we state our main results as follows.

Theorem 1.1. Assume that n = 2 and Ω(ξ) = φ1(|ξ1|) ± φ2(|ξ2|), where
φi (i = 1, 2) satisfies (H1)∼(H3). Then the global estimate (1.1) holds for
1
2 ≤ s < 1 and q = 2

1−s .

Theorem 1.2. Assume that n ≥ 3 and Ω(ξ) = φ1(|ξ1|)± φ2(|ξ2|)± φ3(|ξ3|)±
· · ·±φn(|ξn|), where φi (i = 1, 2, 3, . . . , n) satisfies (H1)∼(H3). Then the global
estimate (1.1) holds for n

4 ≤ s <
n
2 and q = 2n

n−2s .

Remark 1.1. We recall that

St,Ωf(x) = u(x, t) = (2π)−n
∫
Rn

eix·ξ+itΩ(ξ)f̂(ξ)dξ, (x, t) ∈ Rn × R.

As a consequence, when Ω satisfies conditions in Theorem 1.1 (n = 2) or
Theorem 1.2 (n ≥ 3), if f ∈ Hs(Rn) and s ≥ n

4 , we have

lim
t→0

u(x, t) = f(x), a.e. x ∈ Rn.(1.6)

In fact, by a standard argument, for f ∈ Hs(Rn), the pointwise convergence
(1.6) follows from the local estimate

(1.7) ‖S∗Ω‖Lq(Bn) ≤ C‖f‖Hs(Rn), f ∈ Hs(Rn)

for some q ≥ 1 and s ∈ R. Here Bn is the unit ball centered at the origin in
Rn and the local maximal operator S∗Ω associated with the family of operators
{St,Ω}t∈R defined by

S∗Ωf(x) = sup
0<t<1

|St,Ωf(x)|, x ∈ Rn.
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Remark 1.2. Notice that

u(x, t) = eitφ(
√
−∆)f(x) = (2π)−n

∫
Rn

eix·ξ+itφ(|ξ|)f̂(ξ)dξ

is the formal solution of the following generalized dispersive equation:{
i∂tu+ φ(

√
−∆)u = 0, (x, t) ∈ Rn × R,

u(x, 0) = f(x), f ∈ S(Rn),
(1.8)

where φ(
√
−∆) is a pseudo-differential operator with symbol φ(|ξ|). Many

dispersive equation can be reduced this type. For instance, the half-wave equa-
tion (φ(r) = r), the fractional Schrödinger equation (φ(r) = ra (0 < a, a 6= 1)),

the Beam equation (φ(r) =
√

1 + r4), Klein-Gordon or semirelativistic equa-

tion (φ(r) =
√

1 + r2), iBq (φ(r) = r
√

1 + r2), imBq (φ(r) = r√
1+r2

) and the

fourth-order Schrödinger equation (φ(r) = r2 + r4) (see [5, 6, 9, 12–14, 17, 18]
and references therein).

Remark 1.3. There are many elements φ satisfying the conditions (H1)∼(H3),

for instance, ra (a ≥ 1), (1+r2)
a
2 (a ≥ 1),

√
1 + r4, r2 +r4, r

√
1 + r2 and so on.

Moreover, the results of Theorem 1.1 and Theorem 1.2 can be applied to symbol
Ω is a combination of φi (i = 1, 2) or (i = 1, 2, 3, . . . , n), where φi(|ξi|) = |ξi|a,

a > 1, φi(|ξi|) = |ξi|2 + |ξi|4, φi(|ξi|) =
√

1 + |ξi|4, φi(|ξi|) = |ξi|2 + |ξi|4, or

φi(|ξi|) = |ξi|
√

1 + |ξi|2, and so on. Hence, Theorem 1.1 and Theorem 1.2 are
an extension of Theorem A and Theorem B, respectively.

This paper is organized as follows. The proofs of Theorem 1.1 and Theorem
1.2 are given in Section 2 and Section 3, respectively.

2. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we need an important
lemma (i.e., Lemma 2.1 below), which plays a key role in proving Theorem 1.1.

Lemma 2.1. Assume φ satisfies (H1)∼(H3) with m1 > 1, m2 > 1, 1
2 ≤ s < 1,

and µ ∈ C∞0 (R). Then∣∣∣∣ ∫
R
eixξ+itφ(|ξ|)|ξ|−sµ

( ξ
N

)
dξ

∣∣∣∣ ≤ C 1

|x|1−s

for x ∈ R \ {0}, t ∈ R and N = 1, 2, 3, . . . . Here the constant C may depend
on s, m1, m2 and µ but not on x, t or N.

Proof. The proof of Lemma 2.1 is similar to that of Lemma 2.1 in [10]. Here,
we omit the proof of Lemma 2.1. �

Proof of Theorem 1.1. Let t(x) be a measurable function on R2 with t(x) ∈ R.
Assume that n = 2, Ω(ξ) = φ(|ξ1|) ± φ(|ξ2|), where φi (i = 1, 2) satisfies
(H1)∼(H3). We set

Sf(x) =

∫
R2

eix·ξeit(x)Ω(ξ)f̂(ξ)dξ, x ∈ R2 f ∈ S(R2).
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For 1
2 ≤ s < 1 and q = 2

1−s , by linearising the maximal operator to prove the

global estimate (1.1) it suffices to prove that

(2.1) ‖Sf‖Lq(R2) ≤ C‖f‖Ḣs(R2) = C

(∫
R2

|ξ|2s|f̂(ξ)|2dξ
)1/2

.

For f ∈ S(R2), notice that(∫
R2

|ξ1|s|ξ2|s|f̂(ξ)|2dξ
)1/2

≤
(∫

R2

|ξ|2s|f̂(ξ)|2dξ
)1/2

.

Thus to prove (2.1) it suffices to prove that

(2.2) ‖Sf‖Lq(R2) ≤ C
(∫

R2

|ξ1|s|ξ2|s|f̂(ξ)|2dξ
)1/2

.

Let g(ξ) = |ξ1|
s
2 |ξ2|

s
2 f̂(ξ), and then we have

(2.3) Sf(x) =

∫
R2

eix·ξeit(x)Ω(ξ)|ξ1|−
s
2 |ξ2|−

s
2 g(ξ)dξ =: Rg(x),

where

Rg(x) =

∫
R2

eix·ξeit(x)Ω(ξ)|ξ1|−
s
2 |ξ2|−

s
2 g(ξ)dξ.

Thus, by (2.3), to prove (2.2) it suffices to prove that

(2.4) ‖Rg‖Lq(R2) ≤ C‖g‖L2(R2)

for g which is a continuous and rapidly decreasing at infinity function.
We take a real-valued function ρ ∈ C∞0 (R2) such that ρ(x) = 1 if |x| ≤ 1,

and ρ(x) = 0 if |x| ≥ 2. And we choose a real-valued function ψ ∈ C∞0 (R) such
that ψ(x) = 1 if |x| ≤ 1, and ψ(x) = 0 if |x| ≥ 2, and set σ(ξ) = ψ(ξ1)ψ(ξ2).

For ξ ∈ R2 and for N = 1, 2, 3, . . . , we set ρN (x) = ρ( xN ) and σN (ξ) = σ( ξN ).

For x ∈ R2, g ∈ L2(R2), and for N = 1, 2, 3, . . . , the operator RN is defined by

RNg(x) = ρN (x)

∫
R2

eix·ξeit(x)Ω(ξ)|ξ1|−
s
2 |ξ2|−

s
2σN (ξ)g(ξ)dξ.

The adjoint of RN is given by

R′Ng(ξ) = σN (ξ)|ξ1|−
s
2 |ξ2|−

s
2

∫
R2

e−ix·ξe−it(x)Ω(ξ)ρN (x)h(x)dx,

ξ ∈ R2, h ∈ L2(R2).

To prove (2.4) it suffices to prove that

(2.5) ‖RNg‖Lq(R2) ≤ C‖g‖L2(R2).

By duality, show (2.5) it suffices to show that

(2.6) ‖R′Nh‖L2(R2) ≤ C‖h‖Lq′ (R2), N = 1, 2, 3, . . . ,
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where 1
q + 1

q′ = 1. Since

‖R′Nh‖2L2(R2)) =

∫
R2

|R′Nh(ξ)|2dξ

=

∫
R2

R′Nh(ξ)R′Nh(ξ)dξ

=

∫
R2

σN (ξ)2|ξ1|−s|ξ2|−s
(∫

R2

e−ix·ξe−it(x)Ω(ξ)ρN (x)h(x)dx

)
×
(∫

R2

eiy·ξeit(y)φ(ξ)ρN (y)h(y)dy

)
dξ

=

∫
R2

∫
R2

(∫
|ξ1|−s|ξ2|−sei(y−x)·ξei(t(y)−(t(x))Ω(ξ)σN (ξ)2dξ

)
× ρN (x)ρN (y)h(x)h(y)dxdy

=

∫
R2

∫
R2

KN (x, y)ρN (x)ρN (y)h(x)h(y)dxdy,(2.7)

where

KN (x, y) =

∫
R2

|ξ1|−s|ξ2|−sei((y1−x1)ξ1+(y2−x2)ξ2)ei(t(y)−t(x))φ(|ξ1|)e±i(t(y)−t(x))φ(|ξ2|)

ψ(
ξ1
N

)2ψ(
ξ2
N

)2dξ

=

(∫
R
|ξ1|−sei(y1−x1)ξ1ei(t(y)−t(x))φ(|ξ1|)ψ(

ξ1
N

)2dξ1

)
(2.8)

×
(∫

R
|ξ2|−sei(y2−x2)ξ1e±i(t(y)−t(x))φ(|ξ2|)ψ(

ξ2
N

)2dξ2

)
.

Since 1
2 ≤ s < 1, using Lemma 2.1, we obtain

(2.9) |KN (x, y)| ≤ C 1

|x1 − y1|1−s
1

|x2 − y2|1−s
.

We set

P1f(x1, x2) =

∫
R

1

|x1 − y1|1−s
f(y1, x2)dy1,

and

P2f(x1, x2) =

∫
R

1

|x2 − y2|1−s
f(x1, y2)dy2.

Thus, by (2.7) and (2.9), we obtain∫
|R′Nh(x)|2dx

≤ C

∫ ∫
1

|x1 − y1|1−s
1

|x2 − y2|1−s
|h(x)||h(y)|dxdy

= C

∫ ∫
1

|x2 − y2|1−s

(∫
1

|x1 − y1|1−s
|h(y1, y2)|dy1

)
dy2|h(x)|dx
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= C

∫
R2

P2P1|h|(x)|h(x)|dx.(2.10)

By (2.10) and invoking Hölder’s inequality, we get

(2.11)

∫
R2

|R′Nh(x)|2dx ≤ C‖P2P1|h|‖Lq(R2)‖h‖Lq′ (R2),

where q = 2
1−s , q

′ = 2
1+s and 1

2 ≤ s < 1. Denote Iσ the Riesz potential of order
σ, which is defined by

Iσ(f)(u) =

∫
R

f(v)

|u− v|1−σ
dv.

Applying the fact Is is bounded from Lq
′
(R) to Lq(R), we have

(2.12)

(∫
R
|Pjh(x)|qdxj

)1/q

≤ C
(∫

R
|h(x)|q

′
dxj

)1/q′

,

where j = 1, 2. By (2.12) and Minkowski’s inequality, we have

(2.13) ‖P2P1|h|‖Lq(R2) ≤ C‖h‖Lq′ (R2),

where using the fact q′ = 2
1+s and 1

q = 1
q′ − s. Therefore, (2.6) follows from

(2.11) and (2.13). Now we complete the proof of Theorem 1.1.

3. The proof of Theorem 1.2

Let t(x) be a measurable function on Rn with t(x) ∈ R. Assume that n ≥ 3,
Ω(ξ) = φ1(|ξ1|)±φ2(|ξ2|)±φ3(|ξ3|)±· · ·±φn(|ξn|), where φi (i = 1, 2, 3, . . . , n)
satisfies the conditions (H1)∼(H3). We will show that the global estimate (1.1)
holds for n

4 ≤ s <
n
2 and q = 2n

n−2s . We set

Sf(x) =

∫
Rn

eix·ξeit(x)Ω(ξ)f̂(ξ)dξ, x ∈ Rn f ∈ S(Rn).

For n
4 ≤ s <

n
2 and q = 2n

n−2s , by linearising the maximal operator to prove the

global estimate (1.1) it suffices to prove that

(3.1) ‖Sf‖Lq(Rn) ≤ C
(∫

Rn

|ξ1|
2s
n |ξ2|

2s
n | · · · |ξn|

2s
n |f̂(ξ)|2dξ

)1/2

.

Let g(ξ) = |ξ1|
s
n |ξ2|

s
n · · · |ξn|

s
n f̂(ξ), then we have

(3.2) Sf(x) =

∫
Rn

eix·ξeit(x)Ω(ξ)|ξ1|−
s
n |ξ2|−

s
n · · · |ξn|−

s
n g(ξ)dξ =: Rg(x),

where

Rg(x) =

∫
Rn

eix·ξeit(x)Ω(ξ)|ξ1|−
s
n |ξ2|−

s
n · · · |ξn|−

s
n f(ξ)dξ.

To prove (3.1) it suffices to prove that

(3.3) ‖Rg‖Lq(Rn) ≤ C‖g‖L2(Rn)

for g is a function of continuous and rapidly decreasing at infinity.
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Let ρ ∈ C∞0 (Rn) be a real-valued function such that ρ(x) = 1 if |x| ≤ 1 and
ρ(x) = 0 if |x| ≥ 2. Also let ψ ∈ C∞0 (R) be a real-valued function such that
ψ(x) = 1 if |x| ≤ 1 and ψ(x) = 0 if |x| ≥ 2. For ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn, we
set σ(ξ) = ψ(ξ1)ψ(ξ2) · · ·ψ(ξn). Thus, for x ∈ Rn, ξ ∈ Rn and N = 1, 2, 3, . . . ,

we set ρN (x) = ρ( xN ) and σN (ξ) = σ( ξN ). For x ∈ Rn, g ∈ L2(Rn), and
N = 1, 2, 3, . . . , the operator RN is defined by

RNg(x) = ρN (x)

∫
Rn

eix·ξeit(x)φ(ξ)|ξ1|−
s
n |ξ2|−

s
n · · · |ξn|−

s
nσN (ξ)g(ξ)dξ.

The adjoint of RN is given by

R′Ng(ξ) = σN (ξ)|ξ1|−
s
n |ξ2|−

s
n · · · |ξn|−

s
n

∫
Rn

e−ix·ξe−it(x)Ω(ξ)ρN (x)h(x)dx,

ξ ∈ Rn, h ∈ L2(Rn).

To prove (3.3) it is sufficient to prove that

(3.4) ‖RNg‖Lq(Rn) ≤ C‖g‖L2(Rn).

By duality, prove (3.4) it suffices to prove that

(3.5) ‖R′Nh‖L2(Rn) ≤ C‖h‖Lq′ (Rn),

where 1
q + 1

q′ = 1. A similar calculation as (2.7) in proof of Theorem 1.1, we

have

(3.6)

‖R′Nh‖2L2(Rn)) =

∫
Rn

|R′Nh(ξ)|2dξ

=

∫
Rn

∫
Rn

KN (x, y)ρN (x)ρN (y)h(x)h(y)dxdy,

where
(3.7)

KN (x, y) =

∫
Rn

|ξ1|−
2s
n |ξ2|−

2s
n · · · |ξn|−

2s
n ei(y−x)·ξei(t(y)−(t(x))Ω(ξ)σN (ξ)2dξ.

Since n
4 ≤ s <

n
2 , it follows that 1

2 ≤
2s
n < 1, thus, by Lemma 2.1 , we obtain

(3.8) |KN (x, y)| ≤ C 1

|x1 − y1|1−
2s
n

1

|x2 − y2|1−
2s
n

· · · 1

|xn − yn|1−
2s
n

.

We set

Pif(x1, x2, . . . , xn) =

∫
R

1

|xi − yi|1−
2s
n

f(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi,

i = 1, 2, . . . , n. Thus, by (3.6) and (3.8), we obtain

∫
|R′Nh(x)|2dx

(3.9)

≤ C

∫
Rn

∫
Rn

1

|x1 − y1|1−
2s
n

1

|x2 − y2|1−
2s
n

· · · 1

|xn − yn|1−
2s
n

|h(x)||h(y)|dxdy
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= C

∫
Rn

(∫
R

∫
R
· · ·
∫
R

1

|xn − yn|1−
2s
n

1

|xn−1 − yn−1|1−
2s
n

· · · 1

|x2 − y2|1−
2s
n

×
(∫

R

1

|x1 − y1|1−
2s
n

|h(y1, y2, . . . , yn)|dy1

)
dy2 · · · dyn−1dyn

)
|h(x)|dx

= C

∫
Rn

PnPn−1 · · ·P2P1|h|(x)|h(x)|dx.

Invoking Hölder’s inequality, we get

(3.10)

∫
Rn

|R′Nh(ξ)|2dξ ≤ C‖PnPn−1 · · ·P2P1|h|‖Lq(Rn)‖h‖Lq′ (Rn).

Since q = 2n
n−2s , it follows that q′ = 2n

n+2s and the fact 1
q = 1

q′ −
2s
n . Similar to

estimate (2.12), we have

(3.11)

(∫
R
|Pjh(x)|qdxj

)1/q

≤ C
(∫

R
|h(x)|q

′
dxj

)1/q′

,

where j = 1, 2, . . . , n. By (3.11) and Minkowski’s inequality, we have

(3.12) ‖PnPn−1 · · ·P2P1|h|‖Lq(Rn) ≤ C‖h‖Lq′ (Rn).

Therefore, (3.5) follows from (3.10) and (3.12). Now we complete the proof of
Theorem 1.2.
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