• Title/Summary/Keyword: Initial Strain

Search Result 1,353, Processing Time 0.033 seconds

Effect of Epoxy Cracking on Initial Quench Behavior about High Field Superconducting Magnet

  • Lee, B.S.;Kim, D.L.;Choi, Y.S.;Yang, H.S.;Yoo, J.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.26-29
    • /
    • 2006
  • The study to be presented related on initial behavior of quench concerned with many considerations, such as epoxy impregnated coil, critical current density related on strain and temperature, winding effect and behavior of internal superconducting wire. Especially, the deformation behavior of coils under magnetic field and thermal contractions at cryogenic temperatures to be dealt with the analytical method related on Fracture Mechanics. From the results, we know that the strain by self weight contribute to epoxy cracking at the edge of deformed coils and the deformation behavior relate on epoxy cracking must be dealt with biaxial loading problem. Then, the epoxy crack on $r\theta-plane$ under biaxial loading have been propagated with inclined crack angle and joined superconducting wire. Also, we can explain transfer of epoxy crack propagation energy from epoxy resin to superconducting wire.

Tension-Stiffening and Cracking Behavior of 100 MPa Shrinkage-Compensated Ultra High-Strength Strain-Hardening Cement Composite (UHS-SHCC) Ties (100 MPa급 수축보상 초고강도 변형경화형 시멘트 복합체를 사용한 인장부재의 인장강성 및 균열특성)

  • Song, Young-Jae;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.371-379
    • /
    • 2013
  • This paper investigates the cracking and tension-stiffening behavior of 100 MPa shrinkage-compensated strain-hardening cement composite (SHCC) and conventional concrete tie elements in monotonic and cyclic tension. Strain and surface crack formation of tension ties were monitored with two strain displacement transducers and a photo microscope with a lens of magnification 50 times. Three different cement composites such as conventional concrete, shrinkage-compensated SHCC, and normal SHCC were used in the tie specimens to investigate the influence of the cement composite type on the tension stiffening and cracking behavior. Test results indicated that initial shrinkage of the ultra high-strength cement composites is greatly reduced as the 10% replacement of cement by the shrinkage-compensating admixture based on calcium sulfo-aluminate (CSA). The test results on the SHCC tension ties showed that the first cracking load decreases proportionally to the initial shrinkage strain. Reinforced ultra high-strength SHCC ties with the initial shrinkage compensation exhibited improved tension stiffening and smaller crack spacings, i.e. the reduction in crack width. Cyclic loading did not have a significant effect on tension stiffening and cracking behavior of tension ties with normal concrete and SHCC materials.

Precipitation Behaviors of HgTe Nanoinclusions Formed in Thermoelectric PbTe: Initial Induced Lattice Mismatch, Theoretical Calculation and Experimental Verification (PbTe 열전재료에 형성된 HgTe 나노개제물의 석출거동: 초기 격자 불일치의 형성, 이론적 계산 및 실험적 증명)

  • Kim, Kyung-Ho;Kwon, Tae-Hyung;Park, Su-Han;Ahn, Hyung-Keun;Lee, Man-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.599-604
    • /
    • 2011
  • A highly strained nanostructure comprising crystallographically aligned HgTe nanoinclusions and a surrounding PbTe matrix has been synthesized using a precipitation process of supersaturated HgTe-PbTe alloys. From the early precipitation stage, HgTe nanoinclusions take disk shape, which is transformed from initial HgTe nuclei, although there is no lattice constant difference of the two end components at standard state. As a primary reason for the morphological transformation of the initial spherical HgTe nuclei to HgTe nanodisks, the induced lattice mismatch is suggested. On the condition that the HgTe nanodisks maintain perfect coherent nature with PbTe matrix, the stress-free lattice constant of constrained HgTe nanodisks has been calculated based on the defined concept of the strain-induced tetragonality, the linear elasticity and the actual measurement in HRTEM images.

Study of the structural damage identification method based on multi-mode information fusion

  • Liu, Tao;Li, AiQun;Ding, YouLiang;Zhao, DaLiang
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.333-347
    • /
    • 2009
  • Due to structural complicacy, structural health monitoring for civil engineering needs more accurate and effectual methods of damage identification. This study aims to import multi-source information fusion (MSIF) into structural damage diagnosis to improve the validity of damage detection. Firstly, the essential theory and applied mathematic methods of MSIF are introduced. And then, the structural damage identification method based on multi-mode information fusion is put forward. Later, on the basis of a numerical simulation of a concrete continuous box beam bridge, it is obviously indicated that the improved modal strain energy method based on multi-mode information fusion has nicer sensitivity to structural initial damage and favorable robusticity to noise. Compared with the classical modal strain energy method, this damage identification method needs much less modal information to detect structural initial damage. When the noise intensity is less than or equal to 10%, this method can identify structural initial damage well and truly. In a word, this structural damage identification method based on multi-mode information fusion has better effects of structural damage identification and good practicability to actual structures.

Application of the Static Photoelastic Experimental Hybrid Method to the Crack Propagation Criterion for Isotropic Materials (등방성체의 균열전파 기준에 정적 광탄성 실험 하이브리드 법 적용)

  • Shin Dong-Chul;Hawong Jai-Sug;Nam Sung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1229-1236
    • /
    • 2004
  • The specimen materials used in this research are isotropic epoxy resins. The static photoelastic experiment was applied to them. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic experimental hybrid method was introduced and its validity had been assured. Crack propagation criterion used the stress components, which are considered the higher order terms, obtained from the static photoelastic experimental hybrid method was introduced and it was applied to the minimum strain energy density criterion, the maximum tangential stress criterion and mode mixity. Comparing the actual initial angle of crack propagation with the theoretical initial angle of crack propagation obtained from the above failure criterions, the validities of the above two criterions are assured and the optimal distance (r) from the crack-tip is 0.01mm in order to get the initial angle of crack propagation of isotropic epoxy resin.

A Study on the Interfacial Crack Propagation Criterion for Two Dissimilar Isotropic Bimaterial by the Static Photoelastic Experimental Hybrid Method (정적 광탄성 실험 하이브리드 법에 의한 두 상이한 등방성 이종재료의 계면균열전파 기준에 관한 연구)

  • Tche, Konstantin;Hawong, Jai-Sug;Shin, Dong-Chul;Nam, Sung-Su;Nam, Jeong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1216-1221
    • /
    • 2003
  • The specimen materials used in this research is bimaterial. The static photoelastic experiment was applied to them. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic hybrid method was introduced and it's validity had been assured. The static photoelastic hybrid method was applied to the Minimum Strain Energy Density Criterion, the Maximum Tangential Stress Criterion and Mode Mixity. Crack propagation criterion by the static photoelastic hybrid method was introduced and it was applied to the above various failure theories. Comparing the experimental initial angle of crack propagation with the theoretical initial angle of crack propagation from the various failure criterions. And then the optimal crack propagation criterion was suggested and it's validity was assured.

  • PDF

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

A Study on the Crack Propagation Criterion of Orthotropic Material by the Static Photoelastic Experimental Hybrid Method (정적 광탄성 실험 하이브리드법에 의한 직교이방성체의 균열전파 기준에 관한 연구)

  • Shin, Dong-Chul;Hawong, Jai-Sug;Nam, Sung-Su;Kwon, O-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1799-1806
    • /
    • 2004
  • The static photoelastic experiment was applied to orthotropic materials. And then the specimens used in photoelastic experiment were fractured under static load. The static photoelastic experimental hybrid method for orthotropic material was introduced and its validity had been assured. Crack propagation criterion used the stress components, which are considered the higher order terms, obtained from the static photoelastic experimental hybrid method was introduced and it was applied to the minimum strain energy density criterion, the maximum tangential stress criterion and mode mixity. Comparing the actual initial angle of crack propagation with the theoretical initial angle of crack propagation obtained from the above failure criterions, the validities of the above two criterions are assured and the optimal distance (${\gamma}$) from the crack-tip is 0.01mm in order to get the initial angle of crack propagation of orthotropic material(C.F.E.C.).

The elastic strain analysis of forged product and die according to the forging mode (단조형식에 따른 단조품과 금형의 탄성 변형에 관한 연구)

  • Lee, D.K.;Lee, Y.S.;Kim, W.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.586-591
    • /
    • 2001
  • In the cold forging, elastic deformation of the die has been investigated to improve the accuracy of cold forged parts with F.E.M analysis using DEFORM, and with experiments using strain gauges. In the experiments, initial billet was selected to easily find the effect of elastic deformation according to the forging modes, extrusion and upsetting type, and only extrusion type. Elastic deformation of the die can be obtained by the signal from the strain gauges and this signal can be amplified by data acquisition system during the process. In the F.E.M analysis, two types of analysis are used to predict elastic strain of the die. To improve an accuracy of forged product and die dimension, this study compared with strain distribution between experiment and F.E.M analysis. As a result, the history of the deformation of the die and elastic recovery of forged product can be obtained by the elastic strain analysis of forged product and die according to the forging modes.

  • PDF

Dynamic plastic deformation behavior of Fe-X%Mn alloys (Fe-X%Mn 합금의 동적 소성변형거동)

  • Park, Hong Lae;Lee, Jeong Min;Sung, Wan;Kim, Won Baek;Choi, Chong Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.266-278
    • /
    • 1995
  • The high strain-rate dynamic plastic behavior of Fe-X%Mn alloys was investigated. The strain rate did not have an effect when tested under quasi-static strain rates($2{\times}10^{-3}/sec$ and $2{\times}10^{-1}/sec$). However, the true stress increased at all strain levels when the strain rate increased to $6{\times}10^3/sec$. Based on the experimental results, an constitution equation to calculate the dynamic strength for strain rates over $10^4/sec$ was determined. The Fe-5%Mn alloy containing athermal ${\alpha}^{\prime}$ martensite initially did not show work hardening. The work hardening increased with Mn content showing a maximum at 20% Mn. The high work hardening of Fe-20%Mn and Fe-30%Mn alloys appears to be closely related not only to the initial amounts of ${\varepsilon}$ martensite but to the strain induced transformation (${\gamma}{\rightarrow}{\varepsilon}$ and ${\varepsilon}{\rightarrow}{\alpha}^{\prime}$) occurring during each stages of deformation.

  • PDF