Dynamic plastic deformation behavior of Fe-X%Mn alloys

Fe-X%Mn 합금의 동적 소성변형거동

  • Published : 1995.12.31

Abstract

The high strain-rate dynamic plastic behavior of Fe-X%Mn alloys was investigated. The strain rate did not have an effect when tested under quasi-static strain rates($2{\times}10^{-3}/sec$ and $2{\times}10^{-1}/sec$). However, the true stress increased at all strain levels when the strain rate increased to $6{\times}10^3/sec$. Based on the experimental results, an constitution equation to calculate the dynamic strength for strain rates over $10^4/sec$ was determined. The Fe-5%Mn alloy containing athermal ${\alpha}^{\prime}$ martensite initially did not show work hardening. The work hardening increased with Mn content showing a maximum at 20% Mn. The high work hardening of Fe-20%Mn and Fe-30%Mn alloys appears to be closely related not only to the initial amounts of ${\varepsilon}$ martensite but to the strain induced transformation (${\gamma}{\rightarrow}{\varepsilon}$ and ${\varepsilon}{\rightarrow}{\alpha}^{\prime}$) occurring during each stages of deformation.

Keywords