Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.7.599

Precipitation Behaviors of HgTe Nanoinclusions Formed in Thermoelectric PbTe: Initial Induced Lattice Mismatch, Theoretical Calculation and Experimental Verification  

Kim, Kyung-Ho (Department of Advanced Technology Fusion, Konkuk University)
Kwon, Tae-Hyung (Department of Advanced Technology Fusion, Konkuk University)
Park, Su-Han (Department of Advanced Technology Fusion, Konkuk University)
Ahn, Hyung-Keun (Department of Electrical Engineering, Konkuk University)
Lee, Man-Jong (Department of Advanced Technology Fusion, Konkuk University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.7, 2011 , pp. 599-604 More about this Journal
Abstract
A highly strained nanostructure comprising crystallographically aligned HgTe nanoinclusions and a surrounding PbTe matrix has been synthesized using a precipitation process of supersaturated HgTe-PbTe alloys. From the early precipitation stage, HgTe nanoinclusions take disk shape, which is transformed from initial HgTe nuclei, although there is no lattice constant difference of the two end components at standard state. As a primary reason for the morphological transformation of the initial spherical HgTe nuclei to HgTe nanodisks, the induced lattice mismatch is suggested. On the condition that the HgTe nanodisks maintain perfect coherent nature with PbTe matrix, the stress-free lattice constant of constrained HgTe nanodisks has been calculated based on the defined concept of the strain-induced tetragonality, the linear elasticity and the actual measurement in HRTEM images.
Keywords
HgTe nano-disk; PbTe-HgTe; Precipitation; Lattice mismatch; Strain-induced tetragonality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Acta. Mater., 46, 2983 (1998).   DOI
2 G. Rubin and A. G. Khachaturyan, Acta. Mater., 47, 1995 (1999).   DOI
3 R. Muller and D. Gross, Comp. Mater. Sci., 16, 53 (1999).   DOI
4 M. Karlik and B. Jouffrey, Acta. Mater., 45, 3251 (1997).   DOI
5 L. Lochte, A. Gitt, G. Gottstein, and I. Hurtado, Acta. Mater., 48, 2969 (2000).   DOI
6 M. J. Lee and C. U. Kim, Nano. Letters., 3, 1607 (2003).   DOI
7 M. J. Lee, Metal Mater. Int., 9, 83 (2003).   DOI
8 R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature, 413, 597 (2001).   DOI
9 B. C. Sales, Mater. Res. Soc. Bull. 23, 15 (1998).
10 B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett., 86, 4350 (2001).   DOI
11 A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath, Nature, 451, 168 (2007).
12 G. Simons, H. Wang, Handbook on single crystal elastic constants and calculated aggregate properties (MIT Press, 1971).
13 T. Mura, Micromechanics of Defects in Solids, (Martinus Nijhoff, Hague, Netherland, 1987).
14 A. G. Khachaturyan, Theory of structural transformations in solids (John Wiley & Sons, New York, 1983).
15 A. G. Khachaturyan, S. Semenovskaya and T. Tsakalakos, Phys. Rev., B52, 15909 (1995)
16 W. C. Johnson, M. B. Berkenpas, and D. B. Laughlin, Acta. Metall., 36, 3149 (1988).   DOI
17 F. Soisson, A. Barbu and G. Martin, Acta. Mater., 44, 3789 (1996).   DOI
18 A. G. Khachaturyan and G. A. Shatalov, Sov. Phys. JETP, 29, 557 (1969).
19 L. J. Walpole, Proc. Roy. Soc., A300, 270 (1967).
20 R. J. Asaro and D. M. Barnett, J. Mech. Phys. Solids., 23, 77 (1975).   DOI
21 J. K. Lee, D. M. Barnett, and H. I. Aaronson, Metall. Trans., A8, 963 (1977).