• Title/Summary/Keyword: Initial Deformation

Search Result 814, Processing Time 0.029 seconds

Effect of Strain Rate on the Anisotropic Deformation Behavior of Advanced High Strength Steel Sheets (변형률속도에 따른 고강도 강판의 이방성 변화에 관한 연구)

  • Huh, J.;Huh, H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.595-600
    • /
    • 2011
  • This paper investigates the effect of strain rate on the anisotropic deformation behavior of advanced high strength steel sheets. Uniaxial tensile tests were carried out on TRIP590 and DP780 steel sheets at strain rates ranging from 0.001/sec to 100/sec to determine yield stresses and r-values at various loading angles from the reference rolling direction. R-values were determined by the digital image correlation technique. Hill48 and Yld2000-2d yield functions were tested for their capability to describe the plastic deformation anisotropy of the materials. Initial yield loci were constructed using the Yld2000-2d yield function, which adequately described the anisotropic behavior of the materials. The shape of the initial yield loci was found to change with different strain rate, and the anisotropic behavior decreased with increasing strain rate.

The deformation of a free surface due to the impact of a water droplet

  • Kwon, Sun-Hong;Park, Chang-Woo;Lee, Seung-Hun;Shin, Jae-Young;Choi, Young-Myung;Chung, Jang-Young;Isshiki, Hiroshi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • An attempt was made to compute the free surface deformation due to the impact of a water droplet. The Cauchy Poisson, i.e. the initial value problem, was solved with the kinematic and dynamic free surface boundary conditions linearized. The zero order Hankel transformation and Laplace transform were applied to the related equations. The initial condition for the free surface profile was derived from a captured video image. The effect of the surface tension was not significant with the water mass used in this investigation. The computed and observed free surface deformations were compared.

Closed-form solution of axisymmetric deformation of prestressed Föppl-Hencky membrane under constrained deflecting

  • Lian, Yong-Sheng;Sun, Jun-Yi;Dong, Jiao;Zheng, Zhou-Lian;Yang, Zhi-Xin
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.693-698
    • /
    • 2019
  • In this study, the problem of axisymmetric deformation of prestressed $F{\ddot{o}}ppl-Hencky$ membrane under constrained deflecting was analytically solved and its closed-form solution was presented. The small-rotation-angle assumption usually adopted in membrane problems was given up, and the initial stress in membrane was taken into account. Consequently, this closed-form solution has higher calculation accuracy and can be applied for a wider range in comparison with the existing approximate solution. The presented numerical examples demonstrate the validity of the closed-form solution, and show the errors of the contact radius, profile and radial stress of membrane in the existing approximate solution brought by the small-rotation-angle assumption. Moreover, the influence of the initial stress on the contact radius is also discussed based on the numerical examples.

Three dimensional multi-step inverse analysis for optimum design of initial blank in sheet metal forming (박판금속성형의 초기 블랭크 최적설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2055-2067
    • /
    • 1997
  • Values of process parameters in sheet metal forming can be estimated by various one-step inverse methods. One-step inverse methods based on deformation theory, however, cause some amount of error. The amount of error is generally increased as the deformation path becomes more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results. Rapid calculation with this algorithm enables easy determination of an initial blank of sheet metal forming.

Suction Stress and Unconfined Compressive Strength of Compacted Unsaturated Silty Sand (다짐된 불포화 실트질 모래의 흡수응력과 일축압축강도)

  • Park, Seong-Wan;Kwon, Hong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.31-37
    • /
    • 2011
  • In order to evaluate the effect of matric suction on the strength and deformation characteristics, the unsaturated unconfined compression test is performed for the statical1y compacted silty sand. Specimens used were made under conditions with various initial degrees of saturation. The initial matric suction, matric suction at the peak shear strength and the volumetric deformation during the shear process were measured. From these results, it was found that the initial degree of saturation exerts the influence on the behaviors of suction, peak shear strength and the volumetric deformation. Furthermore, the suction stress($P_s$) which means the apparent cohesion due to matric suction in the unsaturated shear strength could be derived.

Influence of Surface Roughness Change on Frictional Behavior of Sheet Steel for Each Forming Mode (소성변형에 의한 냉연 강판의 표면 거칠기 변화가 마찰 특성에 미치는 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.236-241
    • /
    • 2010
  • The frictional behavior of bare steel sheet highly depends on surface roughness. It was investigated that the change of surface roughness of bare steel sheet due to deformation for each forming mode. The flat type friction test was done to check the effect of surface roughness change on frictional characteristics of bare steel sheet. As increasing the deformation, the Ra value was increased at stretching forming mode and drawing forming mode, however the change of Pc showed different trends. The Pc was decreased as increasing stretch deformation but increased at compression deformation. At drawing forming mode, the friction coefficient was increased as deformation was increased after initial big drop with drawing oil. As deformation was increased, the friction coefficient was decreased with drawing oil at stretching forming mode. The results show that the deformation changes the surface roughness and frictional characteristics of steel sheet but the effect depends on the forming mode.

A Proposal of Steel Structure Beam-to-Column Connection Appling High Strength Bolt Improved in Deformation Capacity (고력볼트의 변형능력을 향상시킨 강구조 보-기둥 접합부의 제안)

  • Kim, Seung-Goo;Lee, Seung-Jae;Oh, Sang-Hoon;Kang, Cang-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.182-188
    • /
    • 2006
  • This study propose cutting body portion-high strength bolts to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connection. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

Deformation of STS Cup for EFI Detonator in High Velocity Impact (탄두 충돌 시 기폭관 컵의 변형 해석)

  • Kim, Seok-Bong;Yoo, Yo-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.430-434
    • /
    • 2013
  • In this paper, we have investigated deformation of cup for EFI detonator in high velocity impact test. The experimental result shows that STS cup deformed 0.170 mm with the bulged shape. The numerical simulation result with static/dynamic material properties of SUS304 shows 0.166 mm of deformation. The main parameters to decrease the deformation of cup are stength, thickness and density of cup. The initial condition of SUS304 cup was strength of 215 MPa and thickness of 0.12 mm. As strength increases to 500 MPa, deformation of cup converges to 0 mm, and as thickness increases to 0.18 mm, deformation of cup converges to 0 mm. If the density of cup decreases from 8 to 2.7 g/cc, the deformation of cup decreases to 0.141 mm.

Effect of Initial Texture on the Twinning Formation of AZ31 Mg Alloy (AZ31 Mg 합금의 쌍정 형성에 미치는 Initial Texture의 영향)

  • Lee, Byoung-Ho;Kim, Yong-Woo;Lee, Chong-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.114-117
    • /
    • 2007
  • In the present study, the effects of initial texture on the twinning formation of AZ31 Mg rolled sheet was investigated. Uniaxial compression tests were performed on samples cut along the normal direction and rolling direction of rolled AZ31 Mg alloy sheet at various temperatures (RT, 200, 250, 300, 350, $400^{\circ}C$) with the 0.01/s strain rate. Pole figure of rolling planes showed that basal planes of most gain were located parallel to the rolling direction. After compression test, microstructures and stress-strain curves results indicated that active deformation twining occurred only at the specimen cut along the rolling direction. The slip-twin transition with the increase of temperature was also investigated.

  • PDF

Application of Initial Stress Method on Elasto-plastic Problem in Boundary Element Method (경계요소법의 탄소성문제에 대한 초기응력법의 적용)

  • Soo, Lyong-Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.683-692
    • /
    • 2006
  • The BEM, known as solving boundary value problems, could have some advantages In solving domain problems which are mostly solved by FEM and FDM. Lately, in the elastic-plastic nonlinear problems, BEM could provide the subdomain approach for the region where the plastic deformation could occur and the unknown nodal displacement of this region are added as the unknown of the boundary integral equation for this approach. In this paper, initial stress method was used to establish the formulation of such BEM approach. And a simple rectangular plate having a circular hole was analyzed to verify the suggested method and the result is compared with that from FEM. It is shown that the result of two methods are showing similar stress-strain curves at the root of perforated plate and furthermore the plastic deformation obtained by BEM shows more reasonable behavior than that of FEM.