• Title/Summary/Keyword: Inhibitor of $I{\kappa}B$ kinase

Search Result 49, Processing Time 0.026 seconds

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

A Novel Synthetic Compound, YH-1118, Inhibited LPS-Induced Inflammatory Response by Suppressing IκB Kinase/NF-κB Pathway in Raw 264.7 Cells

  • Yun, Chang Hyun;Jang, Eun Jung;Kwon, Soon Cheon;Lee, Mee-Young;Lee, Sangku;Oh, Sei-Ryang;Lee, Hyeong-Kyu;Ahn, Kyung-Seop;Lee, Ho-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • For the search of a potent first-in-class compound to inactivate macrophages responsible for inflammatory responses, in the present study, we investigated the anti-nflammatory effects of YH-1118, a novel synthetic compound, in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, Raw 264.7. YH-1118 inhibited LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression at both the protein and mRNA levels. The suppression of LPS-induced iNOS expression by YH-1118 was mediated via nuclear factor kappa B (NF-κB), but not activator protein-1 (AP-1) transcription factor. This was supported by the finding that YH-1118 attenuated the phosphorylation of inhibitor of κBα (IκBα) and nuclear translocation and DNA binding activity of NF-κB. Through the mechanisms that YH-1118 inhibited the activation of IκB kinases (IKKs), upstream activators of NF-κB, or p38 MAPK, YH-1118 significantly suppressed LPS-induced production of pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 (p < 0.05). In conclusion, our results suggest that YH-1118 inhibits LPS-induced inflammatory responses by blocking IKK and NF-κB activation in macrophages, and may be a therapeutic candidate for the treatment of various inflammatory diseases.

Anti-inflammatory Activities of Antimicrobial Peptide Locustacin Derived from Locusta migratoria in LPS-stimulated RAW264.7 Cells (풀무치 유래 항균 펩타이드 locustacin의 항염증 활성)

  • Choi, Ra-Yeong;Lee, Joon Ha;Seo, Minchul;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.898-904
    • /
    • 2021
  • Locusta migratoria is a widespread locust species in many parts of the world and is considered an alternative source for the production of protein for value-added ingredients. We previously identified putative antimicrobial peptides derived from L. migratoria through an in silico analysis of its transcriptome. However, its anti-inflammatory effect has not been studied. In this study, we investigated the anti-inflammatory activities of the antimicrobial peptide locustacin (KTHILSFFPSFLPLFLKK-NH2) derived from L. migratoria on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Locustacin (50, 100, and 200 ㎍/ml) significantly reduced the production of nitric oxide (NO) in LPS-stimulated macrophages without any cytotoxicity. Locustacin also inhibited the mRNA and protein expression of pro-inflammatory mediators, such as inducible NO synthase and cyclooxygenase-2, in contrast to the presence of LPS alone. Locustacin decreased the release of LPS-induced pro-inflammatory cytokines, including interleukin (IL)-6 and IL-1β, and their gene expression in a dose-dependent manner. Furthermore, locustacin (100 and/or 200 ㎍/ml) inhibited phosphorylation levels of extracellular signal regulated kinase, p38, and c-Jun N-terminal kinase. Locustacin also suppressed the degradation of inhibitory kappa B alpha, which was considered to be an inhibitor of nuclear factor kappa B (NF-κB). Collectively, these results demonstrate that locustacin can exert anti-inflammatory effects through the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation, activation of NF-κB, and downstream inflammatory mediators in LPS-stimulated macrophage cells.

BIRB 796 has Distinctive Anti-inflammatory Effects on Different Cell Types

  • Ryoo, Soyoon;Choi, Jida;Kim, Jaemyung;Bae, Suyoung;Hong, Jaewoo;Jo, Seunghyun;Kim, Soohyun;Lee, Youngmin
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.283-288
    • /
    • 2013
  • The pro-inflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF${\alpha}$) and interleukin (IL)-$1{\beta}$ are crucial mediators involved in chronic inflammatory diseases. Inflammatory signal pathways regulate inflammatory cytokine expression-mediated by p38 mitogen activated protein kinase (p38MAPK). Therefore, considerable attention has been given to p38MAPK as a target molecule for the development of a novel anti-inflammatory therapeutics. BIRB 796, one of p38MAPK inhibitor, is a candidate of therapeutic drug for chronic inflammatory diseases. In this study, we investigated the effect of BIRB 796 on inflammatory cytokine productions by lipopolysaccharide (LPS) in different immune cell types. BIRB 796 reduced LPS-mediated IL-8 production in THP-1 cells but not in Raw 264.7 cells. Further analysis of signal molecules by western blot revealed that BIRB 796 sufficiently suppressed LPS-mediated phosphorylation of p38MAPK in both cell types whereas it failed to block inhibitor of kappa B (I-${\kappa}B$) degradation in Raw 264.7 cells. Taken together, these results suggest that the anti-inflammatory function of BIRB 796 depends on cell types.

Silymarin Inhibits Cytokine-Stimulated Pancreatic Beta Cells by Blocking the ERK1/2 Pathway

  • Kim, Eun Jeong;Kim, Jeeho;Lee, Min Young;Sudhanva, Muddenahalli Srinivasa;Devakumar, Sundaravinayagam;Jeon, Young Jin
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.282-287
    • /
    • 2014
  • We show that silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), inhibits cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$)-induced production of nitric oxide (NO) in the pancreatic beta cell line MIN6N8a. Immunostaining and Western blot analysis showed that silymarin inhibits iNOS gene expression. RT-PCR showed that silymarin inhibits iNOS gene expression in a dose-dependent manner. We also showed that silymarin inhibits extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) phosphorylation. A MEK1 inhibitor abrogated CM-induced nitrite production, similar to silymarin. Treatment of MIN6N8a cells with silymarin also inhibited CM-stimulated activation of NF-${\kappa}B$, which is important for iNOS transcription. Collectively, we demonstrate that silymarin inhibits NO production in pancreatic beta cells, and silymarin may represent a useful anti-diabetic agent.

Smilax guianensis Vitman Extract Prevents LPS-Induced Inflammation by Inhibiting the NF-κB Pathway in RAW 264.7 Cells

  • Kim, Ju Gyeong;Kim, Min Jeong;Lee, Ji Su;Sydara, Kongmany;Lee, Sangwoo;Byun, Sanguine;Jung, Sung Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.822-829
    • /
    • 2020
  • Nutraceutical treatments can reduce inflammation and prevent the development of inflammatory diseases. In this study, the anti-inflammatory effects of Smilax guianensis Vitman extract (SGE) were examined. SGE suppressed lipopolysaccharide (LPS)-mediated nitrite production in RAW 264.7 cells. SGE also prevented the LPS-induced expression of inducible nitric oxide synthase (iNOS) but not cyclooxygenase (COX)-2. Western blot analysis showed that SGE attenuated LPS-induced phosphorylation of IκB kinase (IKK), inhibitor of kappa B (IκB), and p65. Additionally, SGE inhibited LPS-induced IκB degradation in RAW 264.7 cells. Western blot analysis of the cytosolic and nuclear fractions, as well as immunofluorescence assay results, revealed that SGE suppressed LPS-induced p65 nuclear translocation in RAW 264.7 cells. Moreover, SGE reduced LPS-induced interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) mRNA expression and IL-1β and IL-6 protein expression in RAW 264.7 cells. Collectively, these results indicate that SGE suppresses the NF-κB signaling pathway and thereby inhibits the production of NO, IL-1β, and IL-6.

Radicicol Inhibits iNOS Expression in Cytokine-Stimulated Pancreatic Beta Cells

  • Youn, Cha Kyung;Park, Seon Joo;Li, Mei Hong;Lee, Min Young;Lee, Kun Yeong;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Here, we show that radicicol, a fungal antibiotic, resulted in marked inhibition of inducible nitric oxide synthase (iNOS) transcription by the pancreatic beta cell line MIN6N8a in response to cytokine mixture (CM: TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$). Treatment of MIN6N8a cells with radicicol inhibited CM-stimulated activation of NF-${\kappa}B$/Rel, which plays a critical role in iNOS transcription, in a dose-related manner. Nitrite production in the presence of PD98059, a specific inhibitor of the extracellular signal-regulated protein kinase-1 and 2 (ERK1/2) pathway, was dramatically diminished, suggesting that the ERK1/2 pathway is involved in CM-induced iNOS expression. In contrast, SB203580, a specific inhibitor of p38, had no effect on nitrite generation. Collectively, this series of experiments indicates that radicicol inhibits iNOS gene expression by blocking ERK1/2 signaling. Due to the critical role that NO release plays in mediating destruction of pancreatic beta cells, the inhibitory effects of radicicol on iNOS expression suggest that radicicol may represent a useful anti-diabetic activity.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

The Experimental Study on Antioxidant, Anti-inflammatory, Antipruritic and Antibacterial Effects of the Banchong-san (BCS) (반총산의 항산화, 항염증, 항소양증, 항균효능에 관한 실험 연구)

  • Cho, Eun-Jin;Jo, Seong-Hui;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.3
    • /
    • pp.29-48
    • /
    • 2021
  • Objectives: Banchong-san (BCS) is a herbal formula composed of 13 korean medicinal herbs and is traditionally used to treat inflammatory diseases and pain. The object of this study was to research the antioxidant, anti-inflammatory, antipruritic and antimicrobial effects of the BCS in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: In this experiment, effects of BCS on the following four were measured as follows: (1) Anti-oxidative effects were evaluated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) Radical scavenging activity, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Radical scavenging activity. (2) Anti-inflammatory effects were evaluated by the production amount of Reactive oxygen species (ROS), Nitric oxide (NO), Interleukin-1β (IL-1β), Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), Prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)(the previous two are "mRNA"), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), inhibitor of nuclear factor kappa B (IκBα), nuclear factor kappa B (NF-κB) (the previous five are "Protein") in LPS-Stimulated RAW 264.7 cells. (3)Antipruritic effects were evaluated by the production amount of histamine, Leukotriene B4 (LTB4), LeukotrieneC4 (LTC4) Levels in phorbol 12-myristate 13-acetate(PMA)/ionomycin-stimulated MC/9 mast cell. (4) Anti-microbial effects were evaluated by the growth suppression of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger. Results: The following results were obtained through each measurement: (1) DPPH Radical Scavenging Activity, ABTS Radical Scavenging Activity evoked a significant concentration-dependent increase. (2) ROS, NO, IL-1β, IL-6, TNF-α, PGE2 production amount, iNOS, COX-2 mRNA expression were significantly reduced in the BCS extraction group compared with the control group and significantly decreased the amount of ERK, JNK, p38, NF-κB Protein expression. The amount of IκB-α Protein Expression have increased significantly. (3) The amounts of histamine, LTB4, LTC4 were significantly decreased. (4) The antibacterial efficacy, BCS inhibited the growth of Escherichia coli, Pseudomonas aeruginosa at concentrations of 5 ㎍/ml, but did not suppress the growth of staphylococcus aureus and aspergillus niger. Conclusions: The experimental results show that BCS has anti-oxidant, anti-inflammatory, antipruritic and antimicrobial properties.