• Title/Summary/Keyword: Infrared gas sensor

Search Result 74, Processing Time 0.024 seconds

Study on Optimal Structure of Low Power Microheater to Remain Stability at High Temperature (고온에서 안정한 저전력 마이크로히터 구조 최적화 연구)

  • Lim, Woonhyun;Kondalkar, Vijay;Lee, Keekeun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.69-76
    • /
    • 2019
  • Microheaters with different structures were fabricated and compared to find an optimal configuration enhancing the performances of $C_2H_2$ gas sensor. Three temperature sensors were integrated on the surface of the insulation layer over the microheater, and resistance changes were observed to check the generated heat from the microheater. A low operating voltage of 1mV was applied to the temperature sensor to minimize any influence of thermal heat from the resistance type temperature sensor, whereas high voltages in the range between 10 and 20V were applied to the microheater. A microheater structure generating maximum heat at low voltage was determined. The generated heat was verified by the temperature sensors on the top of the $Si_3N_4$ and infrared camera. A long term stability and accuracy of the microheater were observed. The developed microheater was applied to enhance the performances of $C_2H_2$ gas sensor and successfully confirmed that the developed microheater greatly contributes to the improvement of sensitivity and selectivity of gas sensor.

Temperature Compensation of NDIR $CO_{2}$ Gas Sensor Implemented with ASIC Chip (ASIC 칩 내장형 비분산 적외선 이산화탄소 가스센서의 온도보상)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.40-45
    • /
    • 2007
  • This paper describes NDIR $CO_{2}$ gas sensor that shows the characteristics of temperature compensation. It consists of novel optical cavity that has two elliptical mirrors and a thermopile that includes ASIC chip in the same metal package for the amplification of detector output voltage and temperature sensor. The newly developed sensor module shows high accuracy ($less\;than {\pm}40\;ppm$) throughout the measuring concentration of $CO_{2}$ gas from 0 ppm to 2,000 ppm. After implementing the calculation methods of gas concentration, which is based upon the experimental results, the sensor module shows high accuracy less than ${\pm}5\;ppm$ error throughout the measuring temperature range ($15^{\circ}C\;to\;35$^{\circ}C$) and gas concentrations with self-temperature compensation.

  • PDF

A Study on CO2 Sensor Module Using NDIR Method (비분산 적외선 방식의 CO2 센서 모듈에 관한 연구)

  • Kim, Gyu-Sik;Oh, Joon-Tae;Kim, Hie-Sik;Kim, Jo-Chun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.36-40
    • /
    • 2009
  • In this paper we discuss about the practical implementation of a combined CO and CO2 dual sensor module that is adapted by NDIR (Non-Dispersive Infrared) method that measures the absorbance of gas like CO and CO2 by using gas particles' characteristics that absorb specific wave lengths of infrared ray. NDIR has a long life time, excellent measurement and precision compared to the existing contact types or chemical types of CO2 sensors. Since optical cavity technology that had been developed until now can measure CO2 only we research and develop an optimal optical cavity design and density-temperature calibration technologies that can measure CO and CO2 at the same time and is important to decide the performance of the sensor module according to well-designed wave guides of the different length.

Speculation of Optical Cavity for Improving Optical Gas Sensor's Characteristics (광학적 가스센서 특성 향상을 위한 광 공동 구조의 고찰)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • This paper describes about the simulation and the experimental results of optical cavity with curved mirror surface and vertical mirror surface to improve the light intensity and efficiency of the optical sensors. When we use the vertical mirror surface, the distribution of light reached to the filter surface of detector shows an elliptical shape. Whereas, the curved mirror surface focuses the light into circular shape. Therefore, due to focusing effects in case of using curved mirror surface, the light intensity per unit area has been improved. Consequently, the output voltage of gas sensor has been expected to increase. Based upon the simulation, the experiment of gas sensor has been conducted with $CO_2$ gas from 0ppm to 2,500 ppm at 250 ppm step and $25^{\circ}C$, 45%R.H. ambient. The output voltage of gas sensor that has a curved mirror surface increases approximately 200 mV than that of vertical mirror surface.

  • PDF

MEASUREMENT OF $CO_2$ CONCENTRATION AND A/F RATIO USING FAST NDIR ANALYZER ON TRANSIENT CONDITION OF SI ENGINE

  • Lee, S.W.;Kim, W.S.;Lee, J.H.;Park, J.I.;Yoo, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.385-390
    • /
    • 2006
  • A fast response $CO_2$ analyzer has been developed to study transient characteristics on an SI engine. The analyzer has the delay time of 4.5 ms and time constant of 2.8 ms, which is fast enough to measure $CO_2$ concentration on a transient condition. Wide range of A/F(Air/Fuel) ratio can be estimated using the analyzer with an additional switch type oxygen sensor. The results of measurement of $CO_2$ concentration and A/F ratio on a transient condition including rapid acceleration/deceleration and EGR(Ehxaust Gas Recirculation) on/off are presented and compared with a commercial exhaust gas analyzer and UEGO(Universial Exhaust Gas Oxyzen) sensor.

Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector (분산 반사경 기반 패브리-페로 필터를 이용한 비분산적외선 CO2 센서의 감지 특성)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.446-450
    • /
    • 2021
  • Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.

A Study on Risk Response against Ship Fire using Robot

  • Park, Dea-Woo;Park, Young-Suk;Nam, Jae-Min
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • It is endeavoring for sea safety and fire[1] at sea prevention solidifying control of standard technology and safety supervision aspect in IMO[2] but sea accident and ship fire are happening continuously. Because using Robot in artistic talent of ship in this treatise, studied that correspond to Risk and manage. Attach fire perception sensor for Robot's Risk confrontation, and because using infrared rays sensor, TOUCH SWITCH, sound perception sensor, gas perception sensor, light perception sensor that is threaded in Robot and is achieved, controlled Robot, and establish Low-High value the speed of sound output use and DC MOTOR and COM SEN of when indicate Risk confrontation to Robot and establish Robot's Risk confrontation administration action.

A Study on the Development and Accuracy Improvement of an IR Combustible Gas Leak Detector with Explosion Proof (방폭형 적외선 가연성가스 누출검지기 개발 및 정확도 향상 연구)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Jo, Young-Do;Kwon, Jeong-Rock;Ahn, Sang-Guk;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we developed an explosion proof type and portable combustible gas leak detector and proposed an algorithm to improve the accuracy for measuring gaseous concentrations. The nation's first we developed an infrared gas leak detector with explosion proof standard(Ex d ib) and improved measuring accuracy by using linearization recursion equation and 2nd Lagrange interpolation polynomial. Together, we advanced their performances and added their easy functions after investigating field demands. To compare our and other company's detectors, we performed measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated the excellence of our instruments in measuring accuracy other than detecters through experimental results.

Fabrications and Characteristics of Infrared Sensor Composed of λ/4 Absorbing Structure for the Application of NDIR CO2 Gas Sensor (λ/4 흡수층 구조를 갖는 NDIR 이산화탄소 가스센서용 적외선 센서의 제조 및 특성)

  • Lee, Sung-Hyun;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1005-1009
    • /
    • 2008
  • A noble infrared $\lambda/4$ absorbing structure using metal reflector was studied for uncooled infrared sensors. This paper described the design and the fabrication of IR uncooled detectors which were composed of 21 by 21 elements using the surface micromachining technology. The characteristics of the array were investigated in the spectral region of 4.26 ${\mu}m$. The fabricated detectors exhibited the thermal mass of $9.75\times10^{-9}$ J/K, the thermal conductance of $1.31\times10^{-6}$ W/K, the thermal time constant of 7.4 ms, the responsivity of $1.07\times10^5$ V/W and the detectivity of $1.04\times10^9$ $cmHz^{1/2}/W$, at the chopper frequency of 10 Hz and the bias current of 9.22${\mu}A$. Finally the absorptance efficiency of $\lambda/4$ absorbing structure was about 23.2 % higher than that of absence absorbing structure.

Fabrication of Fluorinated Polymeric Membranes and Their Noble Gas Separation Properties (불소 표면 개질 고분자 분리막의 제조와 노블가스 분리특성)

  • Kim, Gi-Bum;Yoon, Kuk-Ro
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.475-478
    • /
    • 2010
  • Fluorinated polymeric membranes were prepared by direct surface modification of PDMS with fluorine gas ($50{\sim}2000\;{\mu}mol/mol$ in nitrogen). The formed fluorinated polymeric membranes were characterized by FT-IR spectroscopy, GC (Gas chromatography), atomic force microscopy, and scanning electron microscopy. Direct fluorination resulted in the change of permeability and selectivity of various gases (pure gases such as $CO_2$, $O_2$, $N_2$, $C_2H_4$, mixture of He, Ne, Kr, Xe) through PDMS membranes. Fluorination resulted in the maximum 50% increase of selectivity through PDMS membrane.