Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.6.446

Sensing characteristics of a non-dispersive infrared CO2 sensor using a Fabry-Perot filter based on distributed Bragg reflector  

Do, Nam Gon (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Lee, Junyeop (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Jung, Dong Geon (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Kong, Seong Ho (School of Electrical Engineering, Kyungpook National University)
Jung, Daewoong (Advanced Mechatronics R&D Group, Korea Institute of Industrial Technology)
Publication Information
Journal of Sensor Science and Technology / v.30, no.6, 2021 , pp. 446-450 More about this Journal
Abstract
Non-dispersive infrared (NDIR) gas sensors typically use an optical filter that transmits a discriminating 4.26 ㎛ wavelength band to measure carbon dioxide (CO2), as CO2 absorbs 4.26 ㎛ infrared. The filter performance depends on the transmittance and full width at half maximum (FWHM). This paper presents the fabrication, sensitivity, and selectivity characteristics of a distributed Bragg reflector (DBR)-based Fabry-Perot filter with a simple structure for CO2 detection. Each Ge and SiO2 films were prepared using the RF magnetron sputtering technique. The transmittance characteristics were measured using Fourier-transform infrared spectroscopy (FT-IR). The fabricated filter had a peak transmittance of 59.1% at 4.26 ㎛ and a FWHM of 158 nm. In addition, sensitivity and selectivity experiments were conducted by mounting the sapphire substrate and the fabricated filter on an NDIR CO2 sensor measurement system. When measuring the sensitivity, the concentration of CO2 was observed in the range of 0-10000 ppm, and the selectivity was measured for environmental gases of 1000 ppm. The fabricated filter showed lower sensitivity to CO2 but showed higher selectivity with other gases.
Keywords
Carbon dioxide ($CO_2$); Non-dispersive infrared (NDIR); Fabry-Perot filter; Distributed Bragg reflector;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 N. J. Trappeniers,, R. Vetter, and H. A. R. De Bruin, "The pressure coefficient of the infra-red refractive index of germanium", Phys., Vol. 45, No. 4, pp.619-625, 1970.   DOI
2 S. J. Jung, B. J. Kim, and M. Shin, "Low-refractive-index and high-transmittance silicon oxide with a mixed phase of n-type microcrystalline silicon as intermediate reflector layers for tandem solar cells", Sol. Energy. Mater. Sol. Cells, Vol. 121, pp.1-7, 2014.   DOI
3 Y. Zou, S. Chakravarty, P. Wray, and R. T. Chen, "Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection", Sens. Actuators B: Chemical, Vol. 221, pp.1094-1103, 2015.   DOI
4 N. G. Do, J. Lee, D. G. Jung, S. H. Kong, and D. Jung, "Si/SiO 2 Multilayer-based Fabry-Perot Filter for 4.26? Filtering in Carbon Dioxide Detection", J. Sens. Sci. Technol., Vol. 30, No. 1, pp. 56-60, 2021.   DOI
5 N. G. Do, J. Lee, D. G. Jung, S. H. Kong, and D. Jung . "Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor", J. Sens. Sci. Technol., Vol. 30, No. 4, pp. 250-254, 2021.   DOI
6 M. Cho, J. H. Seo, D. Zhao, J. Lee, K. Xiong, X. Yin, Y. Liu, S. C. Liu, M. Kim, T. J. Kim, X. Wang, W. Zhou, and Z. Ma,"Amorphous Si/SiO 2 distributed Bragg reflectors with transfer printed single-crystalline Si nanomembranes", J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., Vol. 34, No. 4, pp. 040601(1)-040601(34), 2016.
7 T. V. Dinh, I. Y. Choi, Y. S. Son, and J. C. Kim, "A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction", Sens. Actuators, B Chem., Vol. 231, pp. 529-538, 2016.   DOI
8 J. Lee and S. H. Lim, "Review on Sensor Technology to Detect Toxic Gases", J. Sens. Sci. Technol., Vol. 24, No. 5, pp.311-318, 2015.   DOI
9 A. F. Perez-Cadenas, C. H. Ros,, S. Morales-Torres, M. Perez-Cadenas,, P. J. Kooyman,, C. Moreno-Castilla, and F. Kapteijn, "Metal-doped carbon xerogels for the electro-catalytic conversion of CO 2 to hydrocarbons", Carbon N. Y, Vol. 56, pp. 324-331, 2013.   DOI
10 F. Vega, F. M. Baena-Moreno, L. M. G. Fernandez, E. Portillo, B. Navarrete, and Z. Zhang, "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale", Appl. Energy, Vol. 260, pp. 114-313, 2020.
11 B. Liao, Q. Wei, K. Wang, and Y. Liu, "Study on CuO±BaTiO 3 semiconductor CO 2 sensor", Sens. Actuators, Vol. 80, pp. 208-214, 2001.   DOI
12 M. Febrina, E. Satria, M. Djamal, W. Srigutomo, and M. Liess, "Development of a simple CO2 sensor based on the thermal conductivity detection by a thermopile", Meas. J. Int. Meas. Confed, Vol. 133, pp. 139-144, 2019.
13 L. Fleming, D. Gibson, S. Song, C. Li, and S. Reid, "Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings", Surf. Coat. Technol., Vol. 336, pp. 9-16, 2018.   DOI
14 R. Frodl and T. Tille, "A High-Precision NDIR CO2 gas sensor for automotive applications", IEEE Sens. J. 6.6, pp. 1697-1705, 2006.   DOI
15 R. Bogue, "Detecting gases with light: A review of optical gas sensor technologies", Sens. Rev., Vol. 35, pp. 133-140, 2015.   DOI
16 R. L. Gentilman, E. A. Maguire, H. S. Starrett, T. M. Hartnett, and H. P. Kirchner, "Strength and transmittance of sapphire and strengthened sapphire", J. Am. Ceram. Soc., Vol. 64, pp.C-116-C-127, 1981.
17 L. Kocsis, P. Herman, and A. Eke, "The modified Beer-Lambert law revisited", Phys. Med. Biol., Vol. 51, pp. N91(1)-N91(51), 2006.   DOI
18 J. Kruger, M. Lenzner, S. Martin, M. Lenner, C. Spielmann, A. Fiedler, and W. Kautek, "Single-and multi-pulse femtosecond laser ablation of optical filter materials", Appl. Surf. Sci., Vol. 208, pp.233-237, 2003.   DOI