• Title/Summary/Keyword: Infrared Imaging Camera

Search Result 142, Processing Time 0.027 seconds

A study on thermal and electrical properties of molybdenum sputtered clothing materials (몰리브덴 스퍼터링 처리 의류소재의 열적 특성과 전기적 특성에 관한 연구)

  • Han, Hye Ree
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.1
    • /
    • pp.88-101
    • /
    • 2022
  • Molybdenum is used in electrical contacts, industrial motors, and transportation materials due to its remarkable ability to resist heat and corrosion. It is also used to flame coat other metals. This study investigated, the thermal characteristics of the molybdenum sputtered material, such as electrical conductivity, and stealth effects on infrared thermal imaging cameras. To this end, molybdenum sputtered samples were prepared by varying the density of the base sample and the type of base materials used. Thereafter, the produced samples were evaluated for their surface state, electrical conductivity, electromagnetic field characteristics, thermal characteristics, stealth effect on infrared thermal imaging cameras, and moisture characteristics. As a result of infrared thermal imaging, the molybdenum layer was directed towards the outside air, and when the sample was a film, it demonstrated a greater stealth effect than the fabric. When the molybdenum layer was directed to the outside air, all of the molybdenum sputtering-treated samples exhibited a lower surface temperature than the "untreated sample." In addition, as a result of confirming electrical properties following the molybdenum sputtering treatment, it was determined that the film exhibited better electrical conductivity than the fabric. All samples that were subjected to molybdenum sputtering exhibited significantly reduced electromagnetic and IR transmission. As a result, the stealth effect on infrared thermal imaging cameras is considered to be a better way of interpreting heat transfer than infrared transmission. These results are expected to have future applications in high-performance smartwear, military uniforms, and medical wear.

Design of Imaging Optical System with 24mm Focal length for MWIR (MWIR용 24mm 초점거리를 가지는 결상광학계의 설계)

  • Lee, Sang-Kil;Lee, Dong-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.6
    • /
    • pp.203-207
    • /
    • 2018
  • This paper deals with the design and development of a lens system capable of imaging an infrared image of $3{\sim}5{\mu}m$ wavelength bands with a focal length of 24mm and good atmospheric transmission characteristics. The design used CodeV, a commercial design program, and the optimization is carried out with weighting to eliminate chromatic aberration, spherical aberration and distortion. The designed lens system consists of two lenses consisting of Si and Ge. Each lens has an aspherical surface on one side. And this optical system has the resolution of the characteristics that the MTF value is 0.40 at the line width of 29lp/mm and the MTF value is 0.25 at the line width of 20lp/mm. This optical system is considered to have the capability to be applied to the thermal imaging camera for MWIR using the $206{\times}156$ array infrared detector of $25{\mu}m$ pixels and the $320{\times}240$ array infrared detector of $17{\mu}m$ pixels.

Apparatus and method for analysing spectral response of a CCD optical sensor using an infrared imaging technique (적외선 영상기법에 의한 CCD 센서의 스펙트럼 응답 특성 분석 기법)

  • Kang Seong-Jun;Na Cheol-Hun;Park Soon-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.25-30
    • /
    • 2006
  • An infrared imaging method is proposed in which direct measurement of the spectral response of CCD sensors can be achieved through digital image processing. This method allows for a simple and economic method to detect the spectral sensitivity of commercialized CCD sensors. The key components of the apparatus are a monochromator, CCD-sample supporter and a personal computer equipped with a digital image processing systems. Tentative experimentation conducted on the commercialized CCD camera has resulted in a fairly consistent agreement with the theoretical model.

The Utilization of Nondestructive Testing and Defects Diagnosis using Infrared Thermography (적외선 열화상을 이용한 비파괴시험 활용 및 결함 진단)

  • Choi, Man-Yong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.525-531
    • /
    • 2004
  • In this paper, the concept of infrared thermography(IRT), the principle of measurement of IRT and how to set up the IR camera for the nondestructive testing are described in detail. Also, its utilization and non-destructive testing(NDT) diagnosis are reviewed. By performing the periodic non-touched WDT through the estimation of thermal patterns related with the temperature for the surface targeted, IRT can be applied to the early prevention of the device failure. For the diagnosis utilization, thermal imaging patterns obtained from IRT for heated blocks with internal defects were estimated through the lion-destructive method and discussed the way of IRT estimation from the analysis of characteristics between material defects and thermal imaging patterns.

A Study on Measuring the Temperature and Revising the Result When Measuring the Temperature of NPP Pipes Using Infrared Thermography (적외선 열화상 기술을 이용한 원자력 배관의 온도측정과 보정에 관한 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Kim, Dong-Soo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.421-426
    • /
    • 2009
  • The emissivity is different because the emitted angle changes according to the position of the infrared thermography camera and object. Because of this, the temperature distribution expressed when measuring the temperature by using the infrared thermography system is not the accuracy temperature. Although the real surface temperature is constant, the temperature measured by using infrared thermography camera have error in accordance with the value of emissivity. In this paper, the temperatures of the round cylindrical object and the flat square object that heated to the equal temperature were measured by infrared thermography camera. The emissivity calibration formula and correction table are made with the affect of the view angle and emission angle form the surface temperature value. The error of measured temperature values are corrected by using the emissivity calibration formula and correction table, and apply to defect detection of the nuclear power plant pipe. From the calibration method, reliability surface temperature values were obtained.

Design and Analysis of an Optical System for an Uncooled Thermal-imaging Camera Using a Hybrid Lens (Hybrid 렌즈를 이용한 비냉각 열상장비 광학계 설계 및 분석)

  • Ok, Chang-Min;Kong, Hyun-Bae;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.241-249
    • /
    • 2017
  • This paper presents the design and evaluation of the optical system for an uncooled thermal-imaging camera. The operating wavelength range of this system is from $7.7{\mu}m$ to $12.8{\mu}m$. Through optimization, we have obtained a LWIR (Long Wave Infrared) optical system with a focal length of 5.44 mm, which consists of four aspheric surfaces and two diffractive surfaces. The f-number of the optical system is F/1.2, and its field of view is $90^{\circ}{\times}67.5^{\circ}$. The hybrid lens was used to balance the higher-order aberrations, and its diffraction properties were evaluated by scalar diffraction theory. We calculated the polychromatic integrated diffraction efficiency, and the MTF drop generated by background noise. We have evaluated the thermal compensation of a LWIR fixed optical system, which is optically passively athermalized to maintain MTF performance in the focal depth. In conclusion, these design results are useful for an uncooled thermal-imaging camera.

Optical and Near-Infrared Color Distributions of the NGC 4874 Globular Cluster System

  • Cho, Hye-Jeon;Blakeslee, John P.;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2012
  • We examine both optical and optical/near-infrared (NIR) color distributions of the globular cluster (GC) system in the core of the Coma cluster of galaxies (Abell 1656), centered on the giant elliptical galaxy NGC 4874, to study how non-linearities in the color-metallicity relations of GC systems in large elliptical galaxies are linked to bimodal optical color distributions. Since optical-NIR color distributions of extragalactic GC systems reflect the underlying features of the metallicity distributions, we also present the color-color relation for this GC system. In order to do this, we combine F160W ($H_{160}$) NIR imaging data acquired with the Wide Field Camera 3 IR Channel (WFC3/IR), newly installed on Hubble Space Telescope (HST), with F475W ($g_{475}$) and FF814W ($I_{814}$) optical imaging data from the HST Advanced Camera for Surveys (ACS). To quantitatively explain the feature of color distributions, we use the Gaussian Mixture Modeling (GMM) code. Finally, we show the radial distribution of the GCs in the field of NGC 4874.

  • PDF

A Design of Fire Detection System based on Infrared Thermal Imaging & CCD Camera (적외선 열영상 및 CCD 카메라 기반 화재감지 시스템 설계)

  • Kim, Tae Wan;Choi, Chang Yong;Lee, Dong Myung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.597-598
    • /
    • 2013
  • A lot of fire and crime accidents are caused to a significant national loss. For example, the network and power facilities in national industry facilities, the fire risk region in large scale factories such as nuclear and thermal power plants, large-sized buildings, cultural properties, metal and steel mills, chemical plants, oil refineries. The development of a fire detection system that can detects the temperature and movement of objects as high-level quality is essential to prevent these incidents and accidents fundamentally. In this paper, the fire detection system based on infrared thermal imaging & CCD camera id designed to solve these problems.

  • PDF

Implementation of an improved real-time object tracking algorithm using brightness feature information and color information of object

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.21-28
    • /
    • 2017
  • As technology related to digital imaging equipment is developed and generalized, digital imaging system is used for various purposes in fields of society. The object tracking technology from digital image data in real time is one of the core technologies required in various fields such as security system and robot system. Among the existing object tracking technologies, cam shift technology is a technique of tracking an object using color information of an object. Recently, digital image data using infrared camera functions are widely used due to various demands of digital image equipment. However, the existing cam shift method can not track objects in image data without color information. Our proposed tracking algorithm tracks the object by analyzing the color if valid color information exists in the digital image data, otherwise it generates the lightness feature information and tracks the object through it. The brightness feature information is generated from the ratio information of the width and the height of the area divided by the brightness. Experimental results shows that our tracking algorithm can track objects in real time not only in general image data including color information but also in image data captured by an infrared camera.

The Construction of Quality Inspection System for Sunroof Sealer Application Process Using SVM Algorithm (SVM 알고리즘을 활용한 선루프 실러도포 공정 품질검사 시스템 구축)

  • Yang, Hee-Jong;Jang, Gil-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2021
  • Recently, due to the aging of workers and the weakening of the labor base in the automobile industry, research on quality inspection methods through ICT(Information and Communication Technology) convergence is being actively conducted. A lot of research has already been done on the development of an automated system for quality inspection in the manufacturing process using image processing. However, there is a limit to detecting defects occurring in the automotive sunroof sealer application process, which is the subject of this study, only by image processing using a general camera. To solve this problem, this paper proposes a system construction method that collects image information using a infrared thermal imaging camera for the sunroof sealer application process and detects possible product defects based on the SVM(Support Vector Machine) algorithm. The proposed system construction method was actually tested and applied to auto parts makers equipped with the sunroof sealer application process, and as a result, the superiority, reliability, and field applicability of the proposed method were proven.