Browse > Article
http://dx.doi.org/10.29049/rjcc.2022.30.1.88

A study on thermal and electrical properties of molybdenum sputtered clothing materials  

Han, Hye Ree (Dep. of Clothing and Textiles, The Catholic University of Korea)
Publication Information
The Research Journal of the Costume Culture / v.30, no.1, 2022 , pp. 88-101 More about this Journal
Abstract
Molybdenum is used in electrical contacts, industrial motors, and transportation materials due to its remarkable ability to resist heat and corrosion. It is also used to flame coat other metals. This study investigated, the thermal characteristics of the molybdenum sputtered material, such as electrical conductivity, and stealth effects on infrared thermal imaging cameras. To this end, molybdenum sputtered samples were prepared by varying the density of the base sample and the type of base materials used. Thereafter, the produced samples were evaluated for their surface state, electrical conductivity, electromagnetic field characteristics, thermal characteristics, stealth effect on infrared thermal imaging cameras, and moisture characteristics. As a result of infrared thermal imaging, the molybdenum layer was directed towards the outside air, and when the sample was a film, it demonstrated a greater stealth effect than the fabric. When the molybdenum layer was directed to the outside air, all of the molybdenum sputtering-treated samples exhibited a lower surface temperature than the "untreated sample." In addition, as a result of confirming electrical properties following the molybdenum sputtering treatment, it was determined that the film exhibited better electrical conductivity than the fabric. All samples that were subjected to molybdenum sputtering exhibited significantly reduced electromagnetic and IR transmission. As a result, the stealth effect on infrared thermal imaging cameras is considered to be a better way of interpreting heat transfer than infrared transmission. These results are expected to have future applications in high-performance smartwear, military uniforms, and medical wear.
Keywords
molybdenum; heat transfer; sputtering; IR camera; electrical conductivity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Han, L., Liu, X., Chen, J., Lin, R., Liu, H., Lu, F., . . . Xin, H. L. (2018). Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angewandte Chemie, 131(8), 2343- 2347. doi:10.1002/ange.201811728   DOI
2 Ma, L., Wu, R., Miao, H., Fan, X., Kong, L., Patil, A., . . . Wang, J. (2020). All-in-one fibrous capacitive humidity sensor for human breath monitoring. Textile Research Journal, 91(3-4), 398-405. doi:10.1177/0040517520944495   DOI
3 Shi, Z., Woodrum, T. H., Dehghan, K., Brewer, S., & Sacks, R. (1992). Sputtering behavior of a magnetron glow discharge device. Applied Spectroscopy, 46(5), 749-757. doi:10.1366/0003702924124709   DOI
4 Dehghan, K., Shi, Z., Woodrum, T. H., Brewer, S., & Sacks, R. (1994). Surface features of conductors eroded by sputtering in a magnetron glow discharge plasma. Applied Spectroscopy, 48(5), 553-560. doi:10.1366/0003702944924808   DOI
5 Qi, H., Sui, K., Ma, Z., Wang, D., Sun, X., & Lu, J. (2002). Polymeric fluorocarbon-coated polyester substrates for waterproof breathable fabrics. Textile Research Journal, 72(2), 93-97. doi:10.1177/004051750207200201   DOI
6 ALCA technology. (2019, September 9). Magnetron sputtering [Blog Post]. Retrieved December 31, 2021, from https://www.alcatechnology.com/en/blog/magnetron-sputtering/
7 Rana, M. S., Hu, C. X., Shaaban, M., Imran, M., Afzal, J., Moussa, M. G., . . . Sun, X. (2020). Soil phosphorus transformation characteristics in response to molybdenum supply in leguminous crops. Journal of Environmental Management, 268(15), 1-11. doi:10.1016/j.jenvman.2020.110610   DOI
8 Sangwan, V. K., Lee, H. S., Bergeron, H., Balla, I., Beck, M. E., Chen, K. S., & Hersam, M. C. (2018). Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 554, 500-504. doi:10.1038/nature25747   DOI
9 Su, C. I., Peng, C. C., & Lee, C. Y. (2010). Performance of viscose rayon based activated carbon fabric modified by sputtering silver and continuous plasma treatment. Textile Research Journal, 81(7), 730-737. doi:10.1177/0040517510388546   DOI
10 Cheng, H., Ding, L.-X., Chen, G.-F., Zhang, L., Xue, J., & Wang, H. (2018). Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Advanced Materials, 30(46), 1-7. doi:10.1002/adma.201803694   DOI
11 Green, D. W., Gruen, D. M., Schreiner, F., & Lerner, J. L. (1974). Sputtering studies using the matrix isolation technique. Applied Spectroscopy, 28(1), 34-38. doi:10.1366/000370274774332849   DOI
12 Habekost, M. (2013). Which color differencing equation should be used? International Circular of Graphic Education and Research, 6, 20-33.
13 Han, H. R. (2021). Electrical and thermal properties of molybdenum sputtering material. Proceeding of the 2021 Costume Culture Association fall Conference Convergence of Costume & Culture, 84.
14 Hao, X., Zhao, Q., Su, S., Zhang, S., Ma, J., Shen, L., . . . He, Y.-B. (2019). Constructing multifunctional interphase between Li1.4 Al0.4 Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Advanced Energy Materials, 9(34), 1-8. doi:10.1002/aenm.201901604   DOI
15 Bae, K.-Y., Yang, Y.-S., & Choi, B.-H. (2013). Analysis of magnetic field distribution in a cylindrical-type magnetron sputtering system. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(6), 881-889. doi:10.1177/0954405413477854   DOI
16 Ashida, Y., Arashiba, K., Nakajima, K., & Nishibayashi, Y. (2019). Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature, 568, 536-540. doi:10.1038/s41586-019-1134-2   DOI
17 Castro, I. A. d., Datta, R. S., Ou, J. Z., CastellanosGomez, A., Sriram, S., Daeneke, T., & Kalantarzadeh, K. (2017). Molybdenum Oxides -From fundamentals to functionality. Advanced Materials, 29(40), 1-31. doi:10.1002/adma.201701619   DOI
18 Yuan, X., Wei, Q., Chen, D., & Xu, W. (2015). Electrical and optical properties of polyester fabric coated with Ag/TiO2 composite films by magnetron sputtering. Textile Research Journal, 86(8), 887-894. doi:10.1177/0040517515595034   DOI
19 Han, H. R. (2019). Characteristics of infrared blocking, stealth and color difference of aluminum sputtered fabrics. Journal of the Korean Society of Clothing and Textiles, 43(4), 592-604. doi:10.5850/JKSCT.2019.43.4.592   DOI
20 Zang, Y., Niu, S., Wu, Y., Zheng, X., Cai, J., Ye, J., . . . Qian, Y. (2019). Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nature Communications, 10(1), 1-8. doi:10.1038/s41467-019-09210-0   DOI
21 Chen, T., Yang, E. K., & Lee, Y. (2021). Development of virtual upcycling fashion design based on 3-dimensional digital clothing technology. The Research Journal of the Costume Culture, 29(3), 374-387. doi:10.29049/rjcc.2021.29.3.374   DOI
22 Depla, D., Segers, S., Leroy, W., Hove, T. V., & Parys, M. V. (2011). Smart textiles: An explorative study of the use of magnetron sputter deposition. Textile Research Journal, 81(17), 1808-1817. doi:10.1177/0040517511411966   DOI
23 Han, H. (2019). Influencing factors on purchase intention for smart healthcare clothing by gender and age -Focused on TAM, clothing attributes, health-lifestyle, and fashion innovativeness-. The Research Journal of the Costume Culture, 27(6), 615-631. doi:10.29049/rjcc.2019.27.6.615   DOI
24 Hou, C., Wang, J., Du, W., Wang, J., Du, Y., Liu, C., . . . Guo, Z. (2019). One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nano-sheets for highly efficient and ultrastable cycling lithium-ion storage. Journal of Materials Chemistry A, 7(22), 13460-13472. doi:10.1039/C9TA03551F   DOI
25 Raza, J., Mebarek-Oudina, F., & Chamkha, A. J. (2019). Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures, 15(4), 737-757. doi:10.1108/MMMS07-2018-0133   DOI
26 Jeong, D., Lee, S., Kwon, C.-R., Park, I., Heo, S., & Kim, D.-E. (2018). Design and development of fabric-type fitness band. The Research Journal of the Costume Culture, 26(4), 632-648. doi:10.29049/rjcc.2018.26.4.632   DOI
27 He, S., Chen, Z., Xin, B., Zhang, F., Wang, X., Liu, Y., . . . Yang, Y. (2019). Surface functionalization of Ag/polypyrrole-coated cotton fabric by in situ polymerization and magnetron sputtering. Textile Research Journal, 89(23-24), 4884-4895. doi:10.1177/0040517519842801   DOI
28 Hua, W., Sun, H.-H., Xu, F., & Wang, J.-G. (2020). A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 39(4), 335-351. doi:10.1007/s12598-020-01384-7   DOI
29 Im, H., & Ko, H. Z. (2017). The analysis of the characteristic types of motion recognition smart clothing products. The Research Journal of the Costume Culture, 25(4), 529-542. doi:10.7741/rjcc.2017.25.4.529   DOI
30 Kang, J., & Kwon, G. (2021). A study on the expression types and internal meanings of ecology images appeared in modern digital fashion. The Research Journal of the Costume Culture, 29(3), 422-436. doi:10.29049/rjcc.2021.29.3.422   DOI
31 Lai, H.-C., Tsai, H.-H., Hung, K.-Y., & Feng, H.-P. (2014). Fabrication of hydroxyapatite targets in radio frequency sputtering for surface modification of titanium dental implants. Journal of Intelligent Material Systems and Structures, 26(9), 1050-1058. doi:10.1177/1045389X14530593   DOI
32 Mao, Z., Wang, W., Liu, Y., Zhang, L., Xu, H., & Zhong, Y. (2014). Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics. Thin Solid Films, 558(2), 208-214. doi:10.1016/j.tsf.2014.02.055   DOI
33 Jones, A. H. S., Camino, D., Teer, D. G., & Jiang, J. (1998). Novel high wear resistant diamond-like carbon coatings deposited by magnetron sputtering of carbon targets. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 212(4), 301-306. doi:10.1243/1350650981542119   DOI
34 Wu, R., Ma, L., Patil, A. B., Hou, C., Meng, Z., Zhang, Y., . . . Yu, W. (2019). A facile method to prepare a wearable pressure sensor based on fabric electrodes for human motion monitoring. Textile Research Journal, 89(23-24), 5144-5152. doi:10.1177/0040517519849451   DOI
35 Shahidi, S., & Ghoranneviss, M. (2015). Plasma sputtering for fabrication of antibacterial and ultraviolet protective fabric. Clothing and Textiles Research Journal, 34(1), 37-47. doi:10.1177/0887302X15594455   DOI
36 Pastel, K. H., & Rawal, S. K. (2016). Exploration of wettability and optical aspects of ZnO nano thin films synthesized by radio frequency magnetron sputtering. Nanomaterials and Nanotechnology, 6(22), 1-7. doi:10.5772/62804   DOI