Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.6.203

Design of Imaging Optical System with 24mm Focal length for MWIR  

Lee, Sang-Kil (Department of Information & Telecommunication, Graduate School of Far East University)
Lee, Dong-Hee (Department of Visual Optics, Far East University)
Publication Information
Journal of the Korea Convergence Society / v.9, no.6, 2018 , pp. 203-207 More about this Journal
Abstract
This paper deals with the design and development of a lens system capable of imaging an infrared image of $3{\sim}5{\mu}m$ wavelength bands with a focal length of 24mm and good atmospheric transmission characteristics. The design used CodeV, a commercial design program, and the optimization is carried out with weighting to eliminate chromatic aberration, spherical aberration and distortion. The designed lens system consists of two lenses consisting of Si and Ge. Each lens has an aspherical surface on one side. And this optical system has the resolution of the characteristics that the MTF value is 0.40 at the line width of 29lp/mm and the MTF value is 0.25 at the line width of 20lp/mm. This optical system is considered to have the capability to be applied to the thermal imaging camera for MWIR using the $206{\times}156$ array infrared detector of $25{\mu}m$ pixels and the $320{\times}240$ array infrared detector of $17{\mu}m$ pixels.
Keywords
$3{\sim}5{\mu}m$; MWIR; Thermal camera; 24mm focal length; Aspheric surface;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 CJ. Richard. (1997). Code V Reference Manual Version 8.20. California : Optical Research Associates.
2 D. H. Han. (2016). Design and Characteristics of 6-60 Lens for CCTV. Journal of Convergence Society for SMB, 6(3), 85-91. DOI : 10.22156/CS4SMB.2016.6.3.085   DOI
3 Bruce H. Walker. (1995). Optical Engineering Fundamentals. NY : McGraw-HILL.
4 R. Usamentiaga et al. (2014). Infrared thermography for temperature measurement and non-destructive testing. Sensors, 14(7), 12305-12348. DOI : 10.3390/s140712305   DOI
5 A. Rogalski. (2002). Infrared detectors: an overview. Infrared Physics & Technology, 43, 187-210. DOI : 10.1016/S1350-4495(02)00140-8   DOI
6 M. Kopytko. (2014). Design and modelling of high-operating temperature MWIR HgCdTe nBn detector with n- and p-type barriers. Infrared Physics & Technology, 64, 47-55. DOI : 10.1016/j.infrared.2014.01.015   DOI
7 E. L. Dereniak. & G. D. Boreman. (1996). Infrared Detectors and Systems. NY : John Wiley & Sons, Inc.
8 C. T. Elliott. (1981). New Detector for Thermal Imaging Systems. Electron. Lett, 17, 312-315. DOI : 10.1049/el:19810218   DOI
9 R. Kingslake. (1983). Optical System Design. NY : Academic Press.
10 Warren J. Smith. (2000). Modern Optical Engineering 3rd Ed. NY : McGraw-HILL.
11 S. M. Hong et al. (2004). Thermal imaging sensor design using 320x240 IRFPA. Hankook Kwanghak Hoeji, 15(5), 423-428. DOI : 10.3807/KJOP.2004.15.5.423   DOI
12 M. W. McDowell & H. W. Klee. (1984). Achromatization in the 3 to $5{\mu}m$ spectral region with visible light transmitting materials. Optical Engineering, 23(2), 187-192. DOI : 10.1117/12.7973409   DOI
13 M. Shen et al. (2014). Design of midwave infrared athermalization optical system with a large focal plane array. Optik, 125, 3085-3087. DOI : 10.1016/j.ijleo.2013.12.024   DOI
14 A. Mann. (2001). Infrared Optics and Zoom Lenses 2nd Ed. Bellingham : SPIE Press.
15 M. Laikin. (2007). LENS DESIGN 4th Ed. NY : CRC Press.
16 S. H. Park & D. H. Lee. (2008). Design of an Anamorphic Prism Lens for the Head Mount Display. J. Korean Ophthalmic Opt. Soc., 13(4), 83-88.
17 D. H. Lee. (2001). Program Development for Extracting the Numerical Data of Aspherical Surface for the Core Manufacturing of Ophthalmic Lens. J. Korean Ophthalmic Opt. Soc., 12(4), 87-90.