• Title/Summary/Keyword: Infrared: imaging

Search Result 763, Processing Time 0.034 seconds

Ultra Precision Machining Technique for Optical System Parts (초정밀 가공기를 활용한 광학계 부품 가공기술)

  • Yang, Sun-Choel;Kim, Sang-Hyuk;Huh, Myung-Sang;Chang, Ki-Soo;Park, Soon-Sub;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2012
  • Ultra Precision Machining Techniques, such as manufacturing Micro Lens Array(MLA), off-axis mirror, $F-{\theta}$ lens for laser printer, are achieved, based on technologies in consequence of development of modern high-precision machining mechanism. Above all, FTS(Fast Tool Servo) and STS(Slow Tool Servo) are more innovative technologies for reducing time and development costs. In this paper, it is described that MLA machining technique by FTS, off-axis mirror machining technique by STS, optics for observing space, and development of infrared aspheric lens for a thermal imaging microscope.

Development of the Ultra Precision Machining of IR Material for Space Observation Optical System (우주관측용 광학계의 적외선 초자 초정밀 가공 기술개발)

  • Yang, Sun-Choel;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.9-14
    • /
    • 2010
  • Using an IR (infrared) optical system of observation and research were performed long before. Nowadays satellites equipped with IR optical system observe the earth and universe. In this paper, we developed the IR optical system for main payload of the STSAT-3 (Science and Technology Satellite -3). We studied the ultra precision machining technique to fabricate FPL-53 lenses which is the IR optical material for space observation camera of the STSAT-3. DOE (Design of Experiment) was used to find best machining characteristic for FPL-53. Finally we fabricated FPL-53 aspheric lens with the form accuracy of P-V $0.36\;{\mu}m$.

Fabrication of 64x1 linear array infrared detector using Hg1-xCdxTe (Hg1-xCdxTe를 이용한 64x1 선형 적외선 감지 소자 제작)

  • Kim, Jin-Sang;Suh, Sang-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.135-138
    • /
    • 2009
  • $64{\times}1$ forcal plane infrared detector has been fabricated by using HgCdTe epi layer. HgCdTe was grown on GaAs substrate by using metal organic chemical vapor deposition. This paper describes key developments in the epi layer growth and device fabrication process. The performance of IR imaging system is summarized.

Challenges in the development of the ultrafast electron microscope (초고속 전자 현미경의 개발과 극복 과제)

  • Park, Doo Jae
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2015
  • In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.

Near-Field Imaging of Graphene

  • Gwon, Hyeok-Sang;Kim, Deok-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.127-127
    • /
    • 2012
  • We carried out the high-resolution dielectric mapping of graphenes on $SiO_2$/Si substrate, using the scattering Apertureless Near-Field Scanning Optical Microscopy (s-ANSOM) in both visible (633 nm) and infrared (3.6 um) wavelengths. In the visible wavelength, the dielectric contrasts are almost proportional to the number of the graphene layers, which indicates that the near-field interaction between the tip and individual graphene layers leads to an image charge oscillation in two-dimension. In the infrared region, on the other hand, we observe unique layer-specific contrasts that do not linearly increase with number of layers. It is attributed to the layer-dependent band- structure of graphenes.

  • PDF

Reliability Test of the Stirling Cryocooler for cooling infrared detector (적외선 센서 냉각용 스터링 냉동기의 수명/신뢰성 시험)

  • 박성제;홍용주;김효봉;유병건;이기백
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.156-159
    • /
    • 2003
  • A free piston and free displacer(FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery & Materials). Our coolers are specifically designed to work in the thermal imaging device and to meet requirements such as cooling capacity, COP and high reliability. In this work, Stirling cryocooler is designed, manufactured and fabricated, and performance characteristics are investigated. This cooler delivers approximately 0.5W cooling at 77K for 30W ∼ 40W of input power from AC power supply. And, after the climate performance and reliability for the cryocooler is discussed, operating test without cooling load at the cold end is performed.

  • PDF

Non-Paraxial Diffraction Effect of High NA Objectives (높은 개구수를 가지는 대물렌즈의 비근축 회절효과)

  • Lee, Jong Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.8-13
    • /
    • 2014
  • By using finite ray-tracing and curve fitting, a numerical method to determine the non-paraxial pupil function of a high-NA objective is presented. MTF degradations caused by the non-paraxial diffraction effect are analyzed for on-axial imaging of a far-infrared objective and aberration-free ellipsoidal mirror system. The ellipsoidal mirror system has the same paraxial specifications as the far-infrared objective.

A Study on Double Sampling Design of CMOS ROIC for Uncooled Bolometer Infrared Sensor using Reference Signal Compensation Circuit (기준신호 보상회로를 이용한 더블 샘플링 방식의 비냉각형 볼로미터 검출회로 설계에 관한 연구)

  • Bae, Young-Seok;Jung, Eun-Sik;Oh, Ju-Hyun;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.89-92
    • /
    • 2010
  • A bolometer sensor used in an infrared thermal imaging system has many advantages on the process because it does not need a separate cooling system and its manufacturing is easy. However the sensitivity of the bolometer is low and the fixed pattern noise(FPN) is large, because the bolometer sensor is made by micro electro mechanical systems (MEMS). These problems can be fixed-by using the high performance readout integrated circuit(ROIC) with noise reduction techniques. In this paper, we propose differential delta sampling circuit to remove the mismatch noise of ROIC itself, the FPN of the bolometer. And for reduction of FPN noise, the reference signal compensation circuit which compensate the reference signal by using on-resistance of MOS transistor was proposed.

High Resolution Electronic Processor Design for Thermal Imager with 320x240 Staring Array Infrared Detector (320x240 적외선 배열검출기를 이용한 고분해능 열상 신호처리기 구현)

  • Hong, Seok-Min;Yu, Wee-Kyung;Yoon, Eun-Suk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.111-117
    • /
    • 2006
  • This paper describes the design principles and methods of electronic processor for thermal imager with 320$\times$240 staring array infrared detector. For the detector's nonuniformity correction and excellent image quality, we have designed the multi-point correction method using the defocusing technique of the optics. And to enhance the image of low contrast and improve the detection capability, the new technique of histogram processing has been designed. Through these image processing techniques, we have developed the high quality thermal imager and acquired a satisfactory thermal image. The result of MRTD(Minimum Resolvable Temperature Difference) is $0.1^{\circ}C$ at 4cycles/mard.

Frequency-domain Diffuse Optical Tomography System Adopting Lock-in Amplifier (Lock-in 증폭기를 채용한 주파수영역 확산 광단층촬영 시스템)

  • Jun, Young-Sik;Baek, Woon-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.3
    • /
    • pp.134-140
    • /
    • 2011
  • In this paper, we developed a frequency-domain diffuse optical tomography(DOT) system for non-invasively imaging in vivo. The system uses near-infrared(NIR) light sources and detectors for which the photon propagation in human tissue is dominated by scattering rather than by absorption. We present the experimental reconstruction images of absorption and scattering coefficients using a liquid tissue phantom, and we obtain the location and shape of an anomaly which has different optical properties than the phantom.