• 제목/요약/키워드: Information Network

검색결과 31,326건 처리시간 0.057초

PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템 (RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP)

  • 윤지영;김동욱;신건윤;김상수;한명묵
    • 인터넷정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.1-11
    • /
    • 2021
  • 인터넷이 발달함에 따라 다양하고 복잡한 사이버공격들이 등장하기 시작했다. 공격들을 방어하기 위해 네트워크 외부에서 다양한 방식의 탐지 시스템들이 활용되었으나 내부에서 공격자를 탐지하는 시스템 및 연구는 현저히 드물어 내부에 들어온 공격자를 탐지하지 못해 큰 문제를 야기하기도 했다. 이를 해결하고자 공격자의 움직임을 추적하고 탐지하는 내부전파경로 탐지 시스템에 대한 연구가 등장하기 시작했다. 특히 그중에서도 Remote Desktop Protocol(RDP) 내 특징을 추출해 탐지하는 방식은 간편하면서도 매우 좋은 결과를 나타내었다. 하지만 그럼에도 불구하고 이전 연구들은 각 로그온 된 노드들 자체의 영향 및 관계성을 고려하지 않았으며, 제시된 특징 또한 일부 모델에서는 떨어지는 결과를 제공하기도 했다. 또한 왜 그렇게 판단했는지 판단에 대해 설명하지 못한다는 문제점도 존재했다. 이는 결과적으로 모델의 신뢰성 및 견고성 문제를 야기하게 된다. 이를 해결하기 위해 본 연구에서는 PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템을 제안한다. 페이지랭크 알고리즘과 여러 통계적인 기법을 활용해 여러 모델에서 활용 가능한 특징들을 생성하고 SHAP을 활용해 모델 예측에 대한 설명을 제공한다. 본 연구에서는 이전 연구에 비해 대부분의 모델에서 더 높은 성능을 보여주는 특징을 생성했고 이를 SHAP을 이용해 효과적으로 증명했다.

스킵연결이 적용된 오토인코더 모델의 클러스터링 성능 분석 (Clustering Performance Analysis of Autoencoder with Skip Connection)

  • 조인수;강윤희;최동빈;박용범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권12호
    • /
    • pp.403-410
    • /
    • 2020
  • 오토인코더의 데이터 복원(Output result) 기능을 이용한 노이즈 제거 및 초해상도와 같은 연구가 진행되는 가운데 오토인코더의 차원 축소 기능을 이용한 클러스터링의 성능 향상에 대한 연구도 활발히 진행되고 있다. 오토인코더를 이용한 클러스터링 기능과 데이터 복원 기능은 모두 동일한 학습을 통해 성능을 향상시킨다는 공통점이 있다. 본 논문은 이런 특징을 토대로, 데이터 복원 성능이 뛰어나도록 설계된 오토인코더 모델이 클러스터링 성능 또한 뛰어난지 알아보기 위한 실험을 진행했다. 데이터 복원 성능이 뛰어난 오토인코더를 설계하기 위해서 스킵연결(Skip connection) 기법을 사용했다. 스킵연결 기법은 기울기 소실(Vanishing gradient)현상을 해소해주고 모델의 학습 효율을 높인다는 장점을 가지고 있을 뿐만 아니라, 데이터 복원 시 손실된 정보를 보완해 줌으로써 데이터 복원 성능을 높이는 효과도 가지고 있다. 스킵연결이 적용된 오토인코더 모델과 적용되지 않은 모델의 데이터 복원 성능과 클러스터링 성능을 그래프와 시각적 추출물을 통해 결과를 비교해 보니, 데이터 복원 성능은 올랐지만 클러스터링 성능은 떨어지는 결과를 확인했다. 이 결과는 오토인코더와 같은 신경망 모델이 출력된 결과 성능이 좋다고 해서 각 레이어들이 데이터의 특징을 모두 잘 학습했다고 확신할 수 없음을 알려준다. 마지막으로 클러스터링의 성능을 좌우하는 잠재변수(latent code)와 스킵연결의 관계를 분석하여 실험 결과의 원인에 대해 파악하였고, 파악한 결과를 통해 잠재변수와 스킵연결의 특징정보를 이용해 클러스터링의 성능저하 현상을 보완할 수 있다는 사실을 보였다. 이 연구는 한자 유니코드 문제를 클러스터링 기법을 이용해 해결하고자 클러스터링 성능 향상을 위한 선행연구이다.

열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템 (Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment)

  • 이정훈;이로운;홍승택;김영곤
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권6호
    • /
    • pp.77-83
    • /
    • 2020
  • 열처리 시설은 뿌리산업 중에서 고열에 의한 열악한 환경과 긴 근로시간 등으로 원격 IOT 시스템의 적용 범위가 확대되는 상황이다. 이러한 열처리 공정 환경에서 IOT 미들웨어는 사물인터넷 기기(센서 등)의 데이터 정보를 해석하고 관리하며 제어할 수 있는 중추적 역할이 요구된다. 그간 열처리 원격에서 제어하는 시스템은 현장 상황에 대한 전반적 감시 없이 작업자의 일괄 시스템 명령으로 운영되었다. 하지만 열처리 시설의 안전성과 정밀한 제어를 위해서는 다양한 센서 컨트롤과 주변 작업환경 인지가 필요하다. 본 논문에서 제시한 열처리 안전지원 시스템은 그에 대한 해결책으로 열화상 감지를 통해 열처리로의 작업인력 접근을 파악하고 원격에서 작업 가동 시 열처리 장비의 Safety를 위한 지원시스템을 제안하였다. 또한 일반적인 고정된 열점 감시 기반 열화상 분석보다 더욱 빠르고 정확한 인식을 위해 DNN 딥러닝 네트워크를 활용한 OPEN CV 기반 열화상 분석 시스템을 구성하였다. 이를 통해 열처리 산업에 특성화된 안전관리 지원과 향후 열처리 환경에서 범용적으로 활용 할 수 있는 시스템을 제안하고자 한다.

과원 환경과 경관 요소가 사과원 주요 나방류 해충 발생에 미치는 영향 (Effects of Orchard Environments and Landscape Features on the Population Occurrence of Major Lepidopteran Pests in Apple Orchards)

  • 김향미;정철의
    • 한국응용곤충학회지
    • /
    • 제60권1호
    • /
    • pp.79-90
    • /
    • 2021
  • 농업생산생태계 내 경관의 구조와 구성은 해충과 천적을 비롯한 생물다양성을 결정하는 중요한 요소이다. 이 연구는 경남 거창군 80개 사과원을 대상으로 경관 구조가 나비목 해충의 발생에 영향을 미칠 수 있는 지를 조사하였다. 과수원의 지정학적 특징, 농약 사용패턴과 과원 관리 방법 등에 대한 정보는 설문 조사를 통해 추가로 분석하였다. 과수원 주변 경관 구조는 인공위성자료에 바탕하여 추출하였다. 복숭아순나방 발생량이 가장 많았고, 사과굴나방, 복숭아심식나방, 사과잎말이나방 순으로 발생하였다. 농가에서는 살균제와 살충제를 각 12.4회, 살비제는 2.4회 살포하였다. 대부분 사과원 주변 식생은 사과 또는 논이었으며, 자두, 복숭아, 포도 또는 폐과원이 있을 경우 복숭아순나방 밀도가 특히 높았다. 복숭아심식나방 역시 주변에 복숭아나 포도가 있을 경우 그 발생량이 더 높았다. 사과굴나방은 복숭아, 포도, 폐과원 그리고 대추가 있는 지역에서 발생량이 많았다. 이러한 결과는 농업 지역에서 경관 관리는 농촌 어메니티 개선뿐 아니라 병해충 관리의 차원에서 기능적 다양성을 추구하는 방향으로 진행되어야 한다는 점을 시사한다.

'미술'과 '언어' 활동 융합형의 아동 발달지원 교육 프레임워크 개발을 위한 탐색적 연구: 텍스트 마이닝을 중심으로 (An exploratory study for the development of a education framework for supporting children's development in the convergence of "art activity" and "language activity": Focused on Text mining method)

  • 박윤미;김시정
    • 한국융합학회논문지
    • /
    • 제12권3호
    • /
    • pp.297-304
    • /
    • 2021
  • 이 연구는 학령기 아동의 발달지원을 위하여 기존의 미술 치료 및 교육에서 시행되어 온 시각적 사고 중심의 접근에 더하여, 언어 교육 및 치료적 접근을 융합하고자 한 것이다. 이에 언어와 미술의 서로 다른 영역의 융합 가능 영역을 탐색하기 위하여 텍스트 마이닝 기법을 적용하였다. 이에 따라 이 연구는 기초 연구, 예비 DB구축, 텍스트 선별, DB 전 처리 및 확정, 불용어 처리, 텍스트 마이닝 분석 및 융합 가능 역 도출'의 절차에 따라 연구를 진행하였다. 연구 결과, 미술 치료 및 교육과 언어 치료 및 교육 분야에서 나타나는 문헌상의 각 군집을 연계하여 의사소통 및 학습 기능, 문제해결 및 감각 기관, 예술 및 지능, 정보와 의사소통, 가정 및 장애, 주제와 개념화 및 또래, 통합과 재구성 및 태도 등과 관련된 융합역을 도출할 수 있었다. 결론적으로 본 연구를 통하여 향후 미술과 언어의 활동 중심 융합형 프로그램을 설계할 수 있는 프레임워크를 마련하고 아동발달 지원을 위한 총체적 접근을 시도하였다는 점에서 연구의 의의가 있다.

부분 단어 토큰화 기법을 이용한 뉴스 기사 정치적 편향성 자동 분류 및 어휘 분석 (Automatic Classification and Vocabulary Analysis of Political Bias in News Articles by Using Subword Tokenization)

  • 조단비;이현영;정원섭;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2021
  • 뉴스 기사의 정치 분야는 보수, 진보와 같이 양극화된 편향적 특성이 존재하며 이를 정치적 편향성이라고 한다. 뉴스 기사로부터 편향성 문제를 분류하기 위해 키워드 기반의 학습 데이터를 구축하였다. 대부분의 임베딩 연구에서는 미등록어로 인한 문제를 완화시키기 위해 형태소 단위로 문장을 구성한다. 본 논문에서는 문장을 언어 모델에 의해 세부적으로 분할하는 부분 단어로 문장을 구성할 경우 미등록어 수가 감소할 것이라 예상하였다. 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델을 제안하며 이를 SVM과 전방향 뉴럴 네트워크 구조에 적용하여 정치적 편향성 분류 실험을 진행하였다. 형태소 토큰화 기법을 이용한 문서 임베딩 모델과 비교 실험한 결과, 부분 단어 토큰화 기법을 이용한 문서 임베딩 모델이 78.22%로 가장 높은 정확도를 보였으며 부분 단어 토큰화를 통해 미등록어 수가 감소되는 것을 확인하였다. 분류 실험에서 가장 성능이 좋은 임베딩 모델을 이용하여 정치적 인물을 기반한 어휘를 추출하였으며 각 성향의 정치적 인물 벡터와의 평균 유사도를 통해 어휘의 편향성을 검증하였다.

환상박피 처리에 의한 일본잎갈나무의 착과유도 효과와 대사물질의 변화 (Enhanced Strobilus Production and Metabolic Alterations in Larix kaempferi by Stem Girdling)

  • 이위영;박응준;강진택;안진권
    • 한국산림과학회지
    • /
    • 제100권3호
    • /
    • pp.367-373
    • /
    • 2011
  • 낙엽송(Larix kaempferi)의 종자에 대한 수요는 증가하고 있으나 채종원에서의 종자생산량은 저조한 실정이다. 종자생산량을 증가시키기 위하여 42년생의 낙엽송 채종목에 환상박피처리를 한 결과 처리목에서 착과량과 착과목 비율이 무처리목에 비해 매우 높게 나타나 환상박피의 처리효과가 명확하였다. 환상박피처리에 의한 낙엽송 채종목의 대사물질 변화를 무처리간 비교분석하기위하여 GC/MS를 이용하여 주관부위의 흉고높이에서 체관부를 포함한 형성층조직 내의 대사물질을 분석하였다. 환상박피 처리목에서 14종의 극성 및 비극성 물질의 함량이 무처리목에 비해 유의적으로 차이가 있는 것으로 나타났다. 환상박피 처리에 의해 인산, sucrose, pimaric acid와 미지 물질 2종의 함량이 무처리목에 비해 상대적으로 증가하였고, malic acid, inositol, 2종의 2당류, 11-trans-Octadecenoic acid 및 4종의 미지 물질 함량은 상대적으로 감소한 것으로 나타났다. 또한 환상박피 처리 목은 무처리목에 비해 유의적으로 높은 전질소 함량을 나타냈다. 이러한 연구결과는 환상박피 처리에 의한 대사물질의 변화에 대한 정보를 제공하고 나아가 낙엽송 종자 생산 증진을 위한 연구에 이용될 수 있을 것이다.

외부 환경에 강인한 딥러닝 기반 손 제스처 인식 (A Deep Learning-based Hand Gesture Recognition Robust to External Environments)

  • 오동한;이병희;김태영
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권5호
    • /
    • pp.31-39
    • /
    • 2018
  • 최근 딥러닝을 기반으로 사용자의 손 제스처를 인식하여 가상현실 환경에서 사용자 친화적 인터페이스를 제공하기 위한 연구가 활발히 진행되고 있다. 그러나 대부분 연구들은 손 정보를 얻기 위하여 별도 센서를 사용하거나 효율적인 학습을 위하여 전처리 과정을 거친다. 또한 조명의 변화나 손 일부가 가려지는 등과 같은 외부환경의 변화를 고려하지 못하고 있다. 본 논문은 일반 웹캠에서 얻어진 RGB 영상에서 별도의 전처리 과정없이 외부 환경에 강인한 딥러닝 기반 손 제스처 인식 방법을 제안한다. 딥러닝 모델로 VGGNet과 GoogLeNet 구조를 개선하고, 각 구조의 성능을 비교한다. 조명이 어둡거나 손 일부가 가려지거나 시야에서 일부 벗어난 손 영상들이 포함된 데이터로 실험한 결과 본 연구에서 제시한 VGGNet과 GoogLeNet 구조는 각각 93.88%와 93.75%의 인식률을 보였고 메모리와 속도 측면에서 GoogLeNet이 VGGNet 보다 메모리를 약 3배 적게 사용하면서 처리속도는 10배 이상 우수함을 알 수 있었다. 본 연구의 결과는 실시간 처리가 가능하여 가상현실 환경에서 게임, 교육, 의료 등 다양한 분야에서 손 제스처 인터페이스로 활용될 수 있다.

가로보가 없는 단지간 RC T빔교의 변형률 응답을 이용한 단순화된 BWIM (Bridge Weigh-In-Motion) 알고리즘 (Simplified Bridge Weigh-In-Motion Algorithm using Strain Response of Short Span RC T-beam Bridge with no Crossbeam installed)

  • 전준창;황윤국;이희현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권3호
    • /
    • pp.57-67
    • /
    • 2021
  • 간선도로망을 효율적으로 관리하기 위해서는 도로를 통행하는 교통에 대한 최신의 정확한 정보가 지속적으로 제공되어야 한다. 중차량의 교통량 및 중량 분포를 효과적으로 얻는 방법 중의 하나가 BWIM 기법이며, 이에 대한 연구가 활발히 진행되고 있다. 이 연구는 기존 연구와 달리 교량의 구조적 특성을 활용하여 간편하게 주행차량의 축간거리 및 중량을 추정할 수 있는 단순화된 BWIM(Bridge Weigh-In-Motion) 알고리즘을 개발하기 위해 수행되었다. 가로보가 설치되지 않은 단지간의 RC-T빔교를 연구대상으로 선정하고, 예비현장 실험을 통해 바닥판 및 주거더의 변형률 응답 특성을 확인하였다. 예비현장실험결과에 기초하여 연구대상 교량에 적합한 단순화된 BWIM 알고리즘을 도출하였다. 이 연구를 통해 도출된 BWIM 알고리즘의 타탕성 및 정확성을 현장실험을 통해 검증하였다. 검증실험 결과, 제안된 BWIM 알고리즘은 주행차량의 축간거리 및 총 중량을 3% 미만의 평균 오차를 가지고 추정하는 결과를 나타내었다.

ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템 (Automatic Bee-Counting System with Dual Infrared Sensor based on ICT)

  • 손재덕;임수호;김동인;한기윤;;;권형욱
    • 한국양봉학회지
    • /
    • 제34권1호
    • /
    • pp.47-55
    • /
    • 2019
  • 다양한 농업 생산 분야에서 정보통신기술 (ICT, Information and Communications Technologies)이 융합하여 많은 발전을 이루어내고 있다. 꿀벌의 활동과 관련한 온·습도, 음파, 이산화탄소, 암모니아, 황화수소 등 다양한 봉군내·외의 요인들과 꿀벌의 활동 추적에 대한 ICT 융복합 시스템 개발연구가 최근 이슈화되고 있다. 본 연구에서는 이중 적외선 센서(QRE1113)를 이용하여 꿀벌 출입 자동 모니터링 시스템을 구현하여 실측 자료를 비교·분석하였다. 꿀벌의 방화행동을 연구하는 기존의 밀원식물 방화 개체 수 측정, 영상촬영을 통한 출입 활동 수 수동 분석, 해외 다양한 자동모니터링 시스템들과 비교하여 본 시스템은 모니터링 시간과 노력의 단축 및 외부 방화 활동과의 일치성, 수동 분석과 상대 오차 5% 미만으로 높은 실효성을 보였다. 또한, 저전력블루투스(BLE)모듈을 활용한 내·외부 온도 센서와 병행을 통해 시스템의 확장성을 확보하였으며, 이 시스템으로부터 확보한 한달간의 데이터 분석을 통해 온도와 방화행동 간 상관관계 분석 및 하루 평균 손실되는 꿀벌의 개체수(출역봉의 1.88%)를 측정할 수 있었다. 향후 복합적인 모니터링 시스템 확장과 빅데이터 축적을 통해 더욱 강력한 실시간 모니터링 도구 및 꿀벌 생태 교육자료로 양봉 산업 발전에 크게 기여할 수 있고, 과학적 분석 도구로 활용될 것이다.