DOI QR코드

DOI QR Code

Automatic Bee-Counting System with Dual Infrared Sensor based on ICT

ICT 기반 이중 적외선 센서를 이용한 꿀벌 출입 자동 모니터링 시스템

  • Son, Jae Deok (Division of Exhibition Management, National Science Museum) ;
  • Lim, Sooho (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Kim, Dong-In (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Han, Giyoun (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Ilyasov, Rustem (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Yunusbaev, Ural (Division of Life Sciences, Major of Biological Sciences, Incheon National University) ;
  • Kwon, Hyung Wook (Division of Life Sciences, Major of Biological Sciences, Incheon National University)
  • 손재덕 (국립과천과학관 전시관리과) ;
  • 임수호 (인천대학교 생명과학부) ;
  • 김동인 (인천대학교 생명과학부) ;
  • 한기윤 (인천대학교 생명과학부) ;
  • ;
  • ;
  • 권형욱 (인천대학교 생명과학부)
  • Received : 2019.03.08
  • Accepted : 2019.04.24
  • Published : 2019.04.30

Abstract

Honey bees are a vital part of the food chain as the most important pollinators for a broad palette of crops and wild plants. The climate change and colony collapse disorder (CCD) phenomenon make it challenging to develop ICT solutions to predict changes in beehive and alert about potential threats. In this paper, we report the test results of the bee-counting system which stands out against the previous analogues due to its comprehensive components including an improved dual infrared sensor to detect honey bees entering and leaving the hive, environmental sensors that measure ambient and interior, a wireless network with the bluetooth low energy (BLE) to transmit the sensing data in real time to the gateway, and a cloud which accumulate and analyze data. To assess the system accuracy, 3 persons manually counted the outgoing and incoming honey bees using the video record of 360-minute length. The difference between automatic and manual measurements for outgoing and incoming scores were 3.98% and 4.43% respectively. These differences are relatively lower than previous analogues, which inspires a vision that the tested system is a good candidate to use in precise apicultural industry, scientific research and education.

다양한 농업 생산 분야에서 정보통신기술 (ICT, Information and Communications Technologies)이 융합하여 많은 발전을 이루어내고 있다. 꿀벌의 활동과 관련한 온·습도, 음파, 이산화탄소, 암모니아, 황화수소 등 다양한 봉군내·외의 요인들과 꿀벌의 활동 추적에 대한 ICT 융복합 시스템 개발연구가 최근 이슈화되고 있다. 본 연구에서는 이중 적외선 센서(QRE1113)를 이용하여 꿀벌 출입 자동 모니터링 시스템을 구현하여 실측 자료를 비교·분석하였다. 꿀벌의 방화행동을 연구하는 기존의 밀원식물 방화 개체 수 측정, 영상촬영을 통한 출입 활동 수 수동 분석, 해외 다양한 자동모니터링 시스템들과 비교하여 본 시스템은 모니터링 시간과 노력의 단축 및 외부 방화 활동과의 일치성, 수동 분석과 상대 오차 5% 미만으로 높은 실효성을 보였다. 또한, 저전력블루투스(BLE)모듈을 활용한 내·외부 온도 센서와 병행을 통해 시스템의 확장성을 확보하였으며, 이 시스템으로부터 확보한 한달간의 데이터 분석을 통해 온도와 방화행동 간 상관관계 분석 및 하루 평균 손실되는 꿀벌의 개체수(출역봉의 1.88%)를 측정할 수 있었다. 향후 복합적인 모니터링 시스템 확장과 빅데이터 축적을 통해 더욱 강력한 실시간 모니터링 도구 및 꿀벌 생태 교육자료로 양봉 산업 발전에 크게 기여할 수 있고, 과학적 분석 도구로 활용될 것이다.

Keywords

References

  1. 김문섭, 김세현, 한진규, 강문수, 박영기. 2011. 중국 산사나무의 꿀벌 방화와 화밀 분비 특성. 한국양봉학회지 26(2): 163-167.
  2. 김병순, 정성민, 김고은, 정철의. 2017. 장수말벌 공격 조기 경보 시스템 프로토타입 설계 및 실내 시연. 한국양봉학회지 32(3): 191-198. https://doi.org/10.17519/apiculture.2017.09.32.3.191
  3. 김병순, 정철의. 2015. 클라우드 기반의 실시간 봉군 온.습도 모니터링 시스템의 설계 및 구현. 한국양봉학회지 30(4): 263-267.
  4. 산림청. 2017. 아까시나무 개화기간 10년전에 비해 50% 급감. 보도자료.
  5. 이병철, 김상용. 2016. 광센서 기술 및 응용. 전자공학회지 43: 27-40.
  6. 임윤규, 손원근, 곽호영, 윤병수, 송정훈. 2015. Remote monitoring system of the honeybee-controlled microenvironment in the hive for the presice apiculture. 한국양봉학회 학술대회 자료집, p. 42.
  7. 장웅익, 이흥재. 1998. PTC 세라믹 히터를 이용한 꿀벌 산란촉진방법에 관한 연구. 제44회 전국과학전람회 농수산부문.
  8. 정경성, 최승윤. 1988. 사과나무에서의 꿀벌방화의 일주활동(日週活動)에 관한 연구. 한국양봉학회지 3(2): 16-21.
  9. 한진규, 강문수, 김세현, 이갑연, 백을선. 2009. 경기도 수원지역 아까시나무의 개화, 꿀벌방화 및 화밀분비 특성. 한국양봉학회지 24(3): 147-152.
  10. Abou-Shaara, H. F. 2014. The foraging behaviour of honey bees, Apis mellifera: a review. Vet. Med. 59(1).
  11. Abrol, D. P. 2007. Foraging behaviour of Apis mellifera L. and Apis cerana F. as determined by the energetics of nectar production in different cultivars of Brassica campestris var. toria. J. Apic. Sci. 51: 19-24.
  12. Basnet, B. and J. Bang. 2018. The state-of-the-art of knowledge-intensive agriculture: a review on applied sensing systems and data analytics. J. Sens. 2018. https://doi.org/10.1155/2018/3528296
  13. Boualouache, A. E., O. Nouali, S. Moussaoui and A. Derder. 2015. A BLE-based data collection system for IoT. pp. 1-5. in 2015 First International Conference on New Technologies of Information and Communication (NTIC).
  14. Chen, C., E.-C. Yang, J.-A. Jiang and T.-T. Lin. 2012. An imaging system for monitoring the in-and-out activity of honey bees. Comput. Electron. Agric. 89: 100-109. https://doi.org/10.1016/j.compag.2012.08.006
  15. Chiron, G., P. Gomez-Kramer and M. Menard. 2013. Detecting and tracking honeybees in 3D at the beehive entrance using stereo vision. EURASIP Journal on Image and Video Processing 2013, 59. https://doi.org/10.1186/1687-5281-2013-59
  16. Chiron, G., P. Gomez-Kramer and M. Menard. 2014. 3D tracking based on possibilities rather than probabilities. p. 9. in VAIB-Workshop on Visual Observation and Analysis of Vertebrate And Insect Behavior, in Conjunction of ICPR.
  17. Debauche, O., M. El Moulat, S. Mahmoudi, S. Boukraa, P. Manneback and F. Lebeau. 2018. Web monitoring of bee health for researchers and beekeepers based on the internet of things. Procedia Comput. Sci. 130: 991-998. https://doi.org/10.1016/j.procs.2018.04.103
  18. Decourtye, A., J. Devillers, P. Aupinel, F. Brun, C. Bagnis, J. Fourrier and M. Gauthier. 2011. Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology 20: 429-437. https://doi.org/10.1007/s10646-011-0594-4
  19. Dineva, K. and T. Atanasova. 2018. OSEMN Process for Working over Data Acquired by IOT Devices Mounted in Beehives.
  20. Dukku, U., Z. Russom and A. G Domo. 2013. Diurnal and seasonal flight activity of the honey bee, Apis mellifera L, and its relationship with temperature, light intensity and relative humidity in the savanna of Northern Nigeria. Global Journal of Science Frontier Research 13: 1-7.
  21. Ellis, J. D., J. D. Evans and J. Pettis. 2010. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 49: 134-136. https://doi.org/10.3896/IBRA.1.49.1.30
  22. Geier, M., M. Weber, A. Rose, U. Obermayr, C. Pruszynski and M. Dole. 2016. A smart Internet of Things(loT) device for monitoring mosquito trap counts in the field while drinking coffee at your desk. https://doi.org/10.13140/RG.2.1.5156.5843
  23. Gil-Lebrero, S., F. J. Quiles-Latorre, M. Ortiz-Lopez, V. Sanchez-Ruiz, V. Gamiz-Lopez and J. J. Luna-Rodriguez. 2016. Honey Bee Colonies Remote Monitoring System. Sensors(Basel) 17. https://doi.org/10.3390/s17010055
  24. Gill, R. J. and N. E. Raine. 2014. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct. Ecol. 28: 1459-1471. https://doi.org/10.1111/1365-2435.12292
  25. He, X.-J., L.-Q. Tian, X.-B. Wu and Z.-J. Zeng. 2016. RFID monitoring indicates honeybees work harder before a rainy day. Insect Science. https://doi.org/10.1111/1744-7917.12298
  26. Jiang, J.-A., C.-H. Wang, C.-H. Chen, M.-S. Liao, Y.-L. Su, W.-S. Chen, C.-P. Huang, E.-C. Yang and C.-L. Chuang. 2016. A WSN-based automatic monitoring system for the foraging behavior of honey bees and environmental factors of beehives. Comput. Electron. Agric. 123: 304-318. https://doi.org/10.1016/j.compag.2016.03.003
  27. Kevan, P. G., E. Cooper, A. Morse, J. P. Kapongo, L. Shipp and S. Khosla. 2009. Measuring foraging activity in bumblebee nests: a simple nest-entrance trip recorder. J. Appl. Entomol. 133: 222-228. https://doi.org/10.1111/j.1439-0418.2008.01338.x
  28. Magnier, B., G. Ekszterowicz, J. Laurent, M. Rival and F. Pfister. 2018. Bee hive traffic monitoring by tracking bee flight paths. pp. 563-571. in Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications- Volume 5: VISAPP, INSTICC.
  29. Nunes-Silva, P., M. Hrncir, J. T. F. Guimaraes, H. Arruda, L. Costa, G. Pessin, J. O. Siqueira, P. de Souza and V. L. Imperatriz-Fonseca. 2019. Applications of RFID technology on the study of bees. Insectes Soc. 66: 15-24. https://doi.org/10.1007/s00040-018-0660-5
  30. Nunez, J. 1977. Nectar flow by melliferous flora and gathering flow by Apis mellifera ligustica. J. Insect Physiol. 23: 265-275. https://doi.org/10.1016/0022-1910(77)90041-5
  31. Pesovic, U., S. RanDic and Z. Stamenkovic. 2017. Design and Implementation of Hardware Platform for Monitoring Honeybee Activity. in Proceedings of 4th International Conference on Electrical, Electronics and Computing Engineering-Serbia.
  32. Robinson, E. J. H., T. O. Richardson, A. B. Sendova-Franks, O. Feinerman and N. R. Franks. 2009. Radio tagging reveals the roles of corpulence, experience and social information in ant decision making. Behav. Ecol. Sociobiol. 63: 627-636. https://doi.org/10.1007/s00265-008-0696-z
  33. Sampangi, R. V. and S. Sampalli. 2017. HiveSec: security in resource-constrained wireless networks inspired by beehives and bee swarms. Int. J. Inf. Secur. 16: 417-433. https://doi.org/10.1007/s10207-016-0341-1
  34. Scaven, V. L. and N. E. Rafferty. 2013. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr. Zool. 59: 418-426. https://doi.org/10.1093/czoolo/59.3.418
  35. Schneider, C. W., J. Tautz, B. Grunewald and S. Fuchs. 2012. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One 7: e30023. https://doi.org/10.1371/journal.pone.0030023
  36. De Souza, P., P. Marendy, K. Barbosa, S. Budi, P. Hirsch, N. Nikolic, T. Gunthorpe, G. Pessin and A. Davie. 2018. Low-cost electronic tagging system for bee monitoring. Sensors(Basel) 18. https://doi.org/10.3390/s18072124
  37. Stelzer, R. J. and L. Chittka. 2010. Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification. BMC Biol. 8: 93. https://doi.org/10.1186/1741-7007-8-93
  38. Streit, S., F. Bock, C. W. W. Pirk and J. Tautz. 2003. Automatic life-long monitoring of individual insect behaviour now possible. Zoology (Jena) 106: 169-171. https://doi.org/10.1078/0944-2006-00113
  39. Tashakkori, R. and A. Ghadiri. 2015. Image processing for honey bee hive health monitoring. pp. 1-7. in SoutheastCon 2015.
  40. Tu, G. J., M. K. Hansen, P. Kryger and P. Ahrendt. 2016. Automatic behaviour analysis system for honeybees using computer vision. Comput. Electron. Agric. 122: 10-18. https://doi.org/10.1016/j.compag.2016.01.011
  41. Verma, L. R. and P. C. Dulta. 1986. Foraging behaviour of Apis cerana indica and Apis mellifera in pollinating apple flowers. J. Apic. Res. 25: 197-201. https://doi.org/10.1080/00218839.1986.11100717

Cited by

  1. Approaches, challenges and recent advances in automated bee counting devices: A review vol.180, pp.1, 2022, https://doi.org/10.1111/aab.12727