• Title/Summary/Keyword: Inflammatory diseases

Search Result 2,255, Processing Time 0.033 seconds

Role of inflammasomes in inflammatory autoimmune rheumatic diseases

  • Yi, Young-Su
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin $(IL)-1{\beta}$ and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and $Sj{\ddot{o}}gren^{\prime}s$ syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.

Systematic Review of Recent Lipidomics Approaches Toward Inflammatory Bowel Disease

  • Lee, Eun Goo;Yoon, Young Cheol;Yoon, Jihyun;Lee, Seul Ji;Oh, Yu-Kyoung;Kwon, Sung Won
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.582-595
    • /
    • 2021
  • Researchers have endeavored to identify the etiology of inflammatory bowel diseases, including Crohn's disease and ulcerative colitis. Though the pathogenesis of inflammatory bowel diseases remains unknown, dysregulation of the immune system in the host gastrointestinal tract is believed to be the major causative factor. Omics is a powerful methodological tool that can reveal biochemical information stored in clinical samples. Lipidomics is a subset of omics that explores the lipid classes associated with inflammation. One objective of the present systematic review was to facilitate the identification of biochemical targets for use in future lipidomic studies on inflammatory bowel diseases. The use of high-resolution mass spectrometry to observe alterations in global lipidomics might help elucidate the immunoregulatory mechanisms involved in inflammatory bowel diseases and discover novel biomarkers for them. Assessment of the characteristics of previous clinical trials on inflammatory bowel diseases could help researchers design and establish patient selection and analytical method criteria for future studies on these conditions. In this study, we curated literature exclusively from four databases and extracted lipidomics-related data from literature, considering criteria. This paper suggests that the lipidomics approach toward research in inflammatory bowel diseases can clarify their pathogenesis and identify clinically valuable biomarkers to predict and monitor their progression.

Interleukin-32 in Inflammatory Autoimmune Diseases

  • Kim, Soohyun
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.123-127
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine inducing crucial inflammatory cytokines such as tumor necrosis factor-${\alpha}(TNF{\alpha})$ and IL-6 and its expression is elevated in various inflammatory autoimmune diseases, certain cancers, as well as viral infections. IL-32 gene was first cloned from activated T cells, however IL-32 expression was also found in other immune cells and non-immune cells. IL-32 gene was identified in most mammals except rodents. It is transcribed as multiple-spliced variants in the absence of a specific activity of each isoform. IL-32 has been studied mostly in clinical fields such as infection, autoimmune, cancer, vascular disease, and pulmonary diseases. It is difficult to investigate the precise role of IL-32 in vivo due to the absence of IL-32 gene in mouse. The lack of mouse IL-32 gene restricts in vivo studies and restrains further development of IL-32 research in clinical applications although IL-32 new cytokine getting a spotlight as an immune regulatory molecule processing important roles in autoimmune, infection, and cancer. In this review, we discuss the regulation and function of IL-32 in inflammatory bowel diseases and rheumatoid arthritis.

Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases

  • Kim, Ji Hye;Yi, Young-Su;Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.435-443
    • /
    • 2017
  • Panax ginseng is one of the most universally used herbal medicines in Asian and Western countries. Most of the biological activities of ginseng are derived from its main constituents, ginsenosides. Interestingly, a number of studies have reported that ginsenosides and their metabolites/derivatives-including ginsenoside (G)-Rb1, compound K, G-Rb2, G-Rd, G-Re, G-Rg1, G-Rg3, G-Rg5, G-Rh1, G-Rh2, and G-Rp1-exert anti-inflammatory activities in inflammatory responses by suppressing the production of proinflammatory cytokines and regulating the activities of inflammatory signaling pathways, such as nuclear factor-${\kappa}B$ and activator protein-1. This review discusses recent studies regarding molecular mechanisms by which ginsenosides play critical roles in inflammatory responses and diseases, and provides evidence showing their potential to prevent and treat inflammatory diseases.

THE IMPACT OF DELAY IN THE TREATMENT OF AUTOINFLAMMATORY DISEASE WITH A MATHEMATICAL MODEL

  • Park, Anna
    • East Asian mathematical journal
    • /
    • v.38 no.3
    • /
    • pp.357-363
    • /
    • 2022
  • Immunological imbalance eventually results in the development of various diseases. A typical example is an imbalance of cytokines with immunomodulatory abilities. In this paper, we propose a two-variable delay model to anti-pro-inflammatory cytokine therapy for autoimmune diseases, which are caused by an imbalance between the pro and anti-inflammatory cytokines. The interaction between pro- and anti-inflammatory cytokines were modeled mathematically to investigate the relevance of cytokines in disease processes. The delay time was estimated to maintain the stability of a biologically important steady state. In particular, the effects of delay with anti-pro-inflammatory cytokines therapy in autoinflammatory diseases were studied.

Ameliorative effects of ginseng and ginsenosides on rheumatic diseases

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.335-341
    • /
    • 2019
  • Background: Inflammation is a host-defensive innate immune response to protect the body from pathogenic agents and danger signals induced by cellular changes. Although inflammation is a host-defense mechanism, chronic inflammation is considered a major risk factor for the development of a variety of inflammatory autoimmune diseases, such as rheumatic diseases. Rheumatic diseases are systemic inflammatory and degenerative diseases that primarily affect connective tissues and are characterized by severe chronic inflammation and degeneration of connective tissues. Ginseng and its bioactive ingredients, genocides, have been demonstrated to have antiinflammatory activity and pharmacological effects on various rheumatic diseases by inhibiting the expression and production of inflammatory mediators. Methods: Literature in this review was searched in a PubMed site of National Center for Biotechnology Information. Results: The studies reporting the preventive and therapeutic effects of ginseng and ginsenosides on the pathogenesis of rheumatic diseases were discussed and summarized. Conclusion: Ginseng and ginsenosides play an ameliorative role on rheumatic diseases, and this review provides new insights into ginseng and ginsenosides as promising agents to prevent and treat rheumatic diseases.

Oxidative Stress, Chromatin Remodeling and Gene Transcription in Inflammation and Chronic Lung Diseases

  • Rahman, Irfan
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.95-109
    • /
    • 2003
  • Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. The sources of the increased oxidative stress in patients with chronic inflammatory lung diseases such as asthma and chronic obstructive pulmonary disease (COPD) derive from the increased burden of inhaled oxidants, and from the increased amounts of reactive oxygen species (ROS) generated by several inflammatory, immune and various structural cells of the airways. Increased levels of ROS produced in the airways is reflected by increased markers of oxidative stress in the airspaces, sputum, breath, lungs and blood in patients with lung diseases. ROS, either directly or via the formation of lipid peroxidation products such as 4-hydroxy-2-nonenal may play a role in enhancing the inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox sensitive transcription factors such as NF-${\kappa}B$ and AP-1. Recent evidences have indicated that oxidative stress and pro-inflammatory mediators can alter nuclear histone acetylation/deacetylation allowing access for transcription factor DNA binding leading to enhanced pro-inflammatory gene expression in various lung cells. Understanding of the mechanisms of redox signaling, NF-${\kappa}B$/AP-1 regulation, the balance between histone acetylation and deacetylation and the release and expression of pro- and anti-inflammatory mediators may lead to the development of novel therapies based on the pharmacological manipulation of antioxidants in lung inflammation and injury. Antioxidants that have effective wide spectrum activity and good bioavailability, thiols or molecules which have dual antioxidant and anti-inflammatory activity, may be potential therapeutic agents which not only protect against the direct injurious effects of oxidants, but may fundamentally alter the underlying inflammatory processes which play an important role in the pathogenesis of chronic inflammatory lung diseases.

The Long Search for Pharmacologically Useful Anti-Inflammatory Flavonoids and Their Action Mechanisms: Past, Present, and Future

  • Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.117-125
    • /
    • 2022
  • Flavonoids are known to exert anti-inflammatory effects. Their pharmacological activities have been proved using various in vitro and in vivo models. Although their action spectrum and potencies are not adequate to alleviate acute inflammatory disorders, they have the potential to treat chronic inflammatory diseases. Recent investigations have revealed that inflammatory processes are involved in many disease processes and conditions. Some examples are skin disorders, cartilage diseases, metabolic inflammatory diseases, and aging. The effects of flavonoids on these disorders have been examined. Several possible application areas for flavonoids have been studied. Local treatment of these disorders with flavonoids is favorable to avoid systemic transformation. In this review, the findings based on the experimental results from my laboratory are summarized and the future possibility of using flavonoids clinically is discussed.

Human umbilical cord mesenchymal stem cell-derived mitochondria (PN-101) attenuate LPS-induced inflammatory responses by inhibiting NFκB signaling pathway

  • Yu, Shin-Hye;Kim, Soomin;Kim, Yujin;Lee, Seo-Eun;Park, Jong Hyeok;Cho, Gayoung;Ha, Jong-Cheon;Jung, Hahnsun;Lim, Sang-Min;Han, Kyuboem;Lee, Hong Kyu;Kang, Young Cheol;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.136-141
    • /
    • 2022
  • Inflammation is one of the body's natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response. Therefore, treating inflammatory diseases by recovering mitochondrial function may be a potential therapeutic approach. Recently, mitochondrial transplantation has been proven to be beneficial in hyperinflammatory animal models. However, it is unclear how mitochondrial transplantation attenuates inflammatory responses induced by external stimuli. Here, we isolated mitochondria from umbilical cord-derived mesenchymal stem cells, referred as to PN-101. We found that PN-101 could significantly reduce LPS-induced mortality in mice. In addition, in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages, PN-101 attenuated LPS-induced increase production of pro-inflammatory cytokines. Furthermore, the anti-inflammatory effect of PN-101 was mediated by blockade of phosphorylation, nuclear translocation, and trans-activity of NFκB. Taken together, our results demonstrate that PN-101 has therapeutic potential to attenuate pathological inflammatory responses.

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo;Ji-Eun Lee;Do-Won Ham;Eun-Hee Shin
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.30-41
    • /
    • 2024
  • The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.