Browse > Article
http://dx.doi.org/10.4062/biomolther.2021.125

Systematic Review of Recent Lipidomics Approaches Toward Inflammatory Bowel Disease  

Lee, Eun Goo (College of Pharmacy, Seoul National University)
Yoon, Young Cheol (College of Pharmacy, Seoul National University)
Yoon, Jihyun (College of Pharmacy, Seoul National University)
Lee, Seul Ji (College of Pharmacy, Seoul National University)
Oh, Yu-Kyoung (College of Pharmacy, Seoul National University)
Kwon, Sung Won (College of Pharmacy, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.29, no.6, 2021 , pp. 582-595 More about this Journal
Abstract
Researchers have endeavored to identify the etiology of inflammatory bowel diseases, including Crohn's disease and ulcerative colitis. Though the pathogenesis of inflammatory bowel diseases remains unknown, dysregulation of the immune system in the host gastrointestinal tract is believed to be the major causative factor. Omics is a powerful methodological tool that can reveal biochemical information stored in clinical samples. Lipidomics is a subset of omics that explores the lipid classes associated with inflammation. One objective of the present systematic review was to facilitate the identification of biochemical targets for use in future lipidomic studies on inflammatory bowel diseases. The use of high-resolution mass spectrometry to observe alterations in global lipidomics might help elucidate the immunoregulatory mechanisms involved in inflammatory bowel diseases and discover novel biomarkers for them. Assessment of the characteristics of previous clinical trials on inflammatory bowel diseases could help researchers design and establish patient selection and analytical method criteria for future studies on these conditions. In this study, we curated literature exclusively from four databases and extracted lipidomics-related data from literature, considering criteria. This paper suggests that the lipidomics approach toward research in inflammatory bowel diseases can clarify their pathogenesis and identify clinically valuable biomarkers to predict and monitor their progression.
Keywords
Crohn's disease; Ulcerative colitis; Inflammatory bowel disease; Lipidomics; Mass spectrometry; Systematic review;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McShane, L. M., Cavenagh, M. M., Lively, T. G., Eberhard, D. A., Bigbee, W. L., Williams, P. M., Mesirov, J. P., Polley, M. Y. C., Kim, K. Y., Tricoli, J. V., Taylor, J. M. G., Shuman, D. J., Simon, R. M., Doroshow, J. H. and Conley, B. A. (2013) Criteria for the use of omics-based predictors in clinical trials. 502, 317-320.   DOI
2 Baumgart, D. C. and Carding, S. R. (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627-1640.   DOI
3 Titz, B., Gadaleta, R. M., Lo Sasso, G., Elamin, A., Ekroos, K., Ivanov, N. V., Peitsch, M. C. and Hoeng, J. (2018) Proteomics and lipidomics in inflammatory bowel disease research: from mechanistic insights to biomarker identification. Int. J. Mol. Sci. 19, 2775.   DOI
4 Cajka, T. and Fiehn, O. (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt. Chem. 61, 192-206.   DOI
5 Baumgart, D. C. and Sandborn, W. J. (2007) Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369, 1641-1657.   DOI
6 Williams, H. R., Cox, I. J., Walker, D. G., Cobbold, J. F., Taylor-Robinson, S. D., Marshall, S. E. and Orchard, T. R. (2010) Differences in gut microbial metabolism are responsible for reduced hippurate synthesis in Crohn's disease. BMC Gastroenterol. 10, 108.   DOI
7 Moher, D., Liberati, A., Tetzlaff, J. and Altman, D. G. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339, b2535.   DOI
8 Ng, S. C., Shi, H. Y., Hamidi, N., Underwood, F. E., Tang, W., Benchimol, E. I., Panaccione, R., Ghosh, S., Wu, J. C. Y., Chan, F. K. L., Sung, J. J. Y. and Kaplan, G. G. (2017) Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390, 2769-2778.   DOI
9 Sauer, C. G. and Kugathasan, S. (2009) Pediatric inflammatory bowel disease: highlighting pediatric differences in IBD. Gastroenterol. Clin. North Am. 38, 611-628.   DOI
10 Braun, A., Treede, I., Gotthardt, D., Tietje, A., Zahn, A., Ruhwald, R., Schoenfeld, U., Welsch, T., Kienle, P., Erben, G., Lehmann, W. D., Fuellekrug, J., Stremmel, W. and Ehehalt, R. (2009) Alterations of phospholipid concentration and species composition of the intestinal mucus barrier in ulcerative colitis: a clue to pathogenesis. Inflamm. Bowel Dis. 15, 1705-1720.   DOI
11 Bazarganipour, S., Hausmann, J., Oertel, S., El-Hindi, K., Brachtendorf, S., Blumenstein, I., Kubesch, A., Sprinzl, K., Birod, K., Hahnefeld, L., Trautmann, S., Thomas, D., Herrmann, E., Geisslinger, G., Schiffmann, S. and Grosch, S. (2019) The lipid status in patients with ulcerative colitis: sphingolipids are disease-dependent regulated. J. Clin. Med. 8, 971.   DOI
12 Dennis, E. A. and Norris, P. C. (2015) Eicosanoid storm in infection and inflammation. Nat. Rev. Immunol. 11, 511-523.   DOI
13 Bene, J., Komlosi, K., Havasi, V., Talian, G., Gasztonyi, B., Horvath, K., Mozsik, G., Hunyady, B., Melegh, B. and Figler, M. (2006) Changes of plasma fasting carnitine ester profile in patients with ulcerative colitis. World J. Gastroenterol. 12, 110-113.   DOI
14 Bennike, T., Birkelund, S., Stensballe, A. and Andersen, V. (2014) Biomarkers in inflammatory bowel diseases: current status and proteomics identification strategies. World J. Gastroenterol. 20, 3231-3244.   DOI
15 Bryan, P. F., Karla, C., Edgar Alejandro, M. T., Sara Elva, E. P., Gemma, F. and Luz, C. (2016) Sphingolipids as mediators in the crosstalk between microbiota and intestinal cells: implications for inflammatory bowel disease. Mediators Inflamm. 2016, 9890141.   DOI
16 Diab, J., Hansen, T., Goll, R., Stenlund, H., Ahnlund, M., Jensen, E., Moritz, T., Florholmen, J. and Forsdahl, G. (2019) Lipidomics in ulcerative colitis reveal alteration in mucosal lipid composition associated with the disease state. Inflamm. Bowel Dis. 25, 1780-1787.   DOI
17 Molodecky, N. A., Panaccione, R., Ghosh, S., Barkema, H. W. and Kaplan, G. G. (2011) Challenges associated with identifying the environmental determinants of the inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 1792-1799.   DOI
18 Ehehalt, R., Wagenblast, J., Erben, G., Lehmann, W. D., Hinz, U., Merle, U. and Stremmel, W. (2004) Phosphatidylcholine and lysophosphatidylcholine in intestinal mucus of ulcerative colitis patients. A quantitative approach by nanoelectrospray-tandem mass spectrometry. Scand. J. Gastroenterol. 39, 737-742.   DOI
19 Martin, F. P., Ezri, J., Cominetti, O., Da Silva, L., Kussmann, M., Godin, J. P. and Nydegger, A. (2016) Urinary metabolic phenotyping reveals differences in the metabolic status of healthy and inflammatory bowel disease (IBD) children in relation to growth and disease activity. Int. J. Mol. Sci. 17, 1310.   DOI
20 Masoodi, M., Pearl, D. S., Eiden, M., Shute, J. K., Brown, J. F., Calder, P. C. and Trebble, T. M. (2013) Altered colonic mucosal polyunsaturated fatty acid (PUFA) derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology. PLoS ONE 8, e76532.   DOI
21 Murgia, A., Hinz, C., Liggi, S., Denes, J., Hall, Z., West, J., Santoru, M. L., Piras, C., Manis, C., Usai, P., Atzori, L., Griffin, J. L. and Caboni, P. (2018) Italian cohort of patients affected by inflammatory bowel disease is characterised by variation in glycerophospholipid, free fatty acids and amino acid levels. Metabolomics 14, 140.   DOI
22 Roberts, L. D., McCombie, G., Titman, C. M. and Griffin, J. L. (2008) A matter of fat: an introduction to lipidomic profiling methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 871, 174-181.   DOI
23 Manfredi, M., Conte, E., Barberis, E., Buzzi, A., Robotti, E., Caneparo, V., Cecconi, D., Brandi, J., Vanni, E., Finocchiaro, M., Astegiano, M., Gariglio, M., Marengo, E. and De Andrea, M. (2019) Integrated serum proteins and fatty acids analysis for putative biomarker discovery in inflammatory bowel disease. J. Proteomics 195, 138-149.   DOI
24 Schneider, H., Braun, A., Fullekrug, J., Stremmel, W. and Ehehalt, R. (2010) Lipid based therapy for ulcerative colitis-modulation of intestinal mucus membrane phospholipids as a tool to influence inflammation. Int. J. Mol. Sci. 11, 4149-4164.   DOI
25 Daniluk, U., Daniluk, J., Kucharski, R., Kowalczyk, T., Pietrowska, K., Samczuk, P., Filimoniuk, A., Kretowski, A., Lebensztejn, D. and Ciborowski, M. (2019) Untargeted metabolomics and inflammatory markers profiling in children with Crohn's disease and ulcerative colitis-a preliminary study. Inflamm. Bowel Dis. 25, 1120-1128.   DOI
26 Duan, R. D. and Nilsson, A. (2009) Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog. Lipid Res. 48, 62-72.   DOI
27 Scoville, E. A., Allaman, M. M., Brown, C. T., Motley, A. K., Horst, S. N., Williams, C. S., Koyama, T., Zhao, Z., Adams, D. W., Beaulieu, D. B., Schwartz, D. A., Wilson, K. T. and Coburn, L. A. (2018) Alterations in lipid, amino acid, and energy metabolism distinguish Crohn's disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics 14, 17.   DOI
28 Storr, M., Vogel, H. J. and Schicho, R. (2013) Metabolomics: is it useful for inflammatory bowel diseases? Curr. Opin. Gastroenterol. 29, 378-383.   DOI
29 Ezri, J., Marques-Vidal, P. and Nydegger, A. (2012) Impact of disease and treatments on growth and puberty of pediatric patients with inflammatory bowel disease. Digestion 85, 308-319.   DOI
30 Iwatani, S., Iijima, H., Otake, Y., Amano, T., Tani, M., Yoshihara, T., Tashiro, T., Tsujii, Y., Inoue, T., Hayashi, Y., Takeda, K., Hayashi, A., Fujita, S., Shinzaki, S. and Takehara, T. (2020) Novel mass spectrometry-based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 35, 1355-1364.   DOI
31 Pearl, D. S., Masoodi, M., Eiden, M., Brummer, J., Gullick, D., Mckeever, T. M., Whittaker, M. A., Nitch-Smith, H., Brown, J. F., Shute, J. K., Mills, G., Calder, P. C. and Trebble, T. M. (2014) Altered colonic mucosal availability of n-3 and n-6 polyunsaturated fatty acids in ulcerative colitis and the relationship to disease activity. J. Crohns Colitis 8, 70-79.   DOI
32 Zhang, C., Wang, K., Yang, L., Liu, R., Chu, Y., Qin, X., Yang, P. and Yu, H. (2018) Lipid metabolism in inflammation-related diseases. Analyst 143, 4526-4536.   DOI
33 Tefas, C., Ciobanu, L., Tantau, M., Moraru, C. and Socaciu, C. (2020) The potential of metabolic and lipid profiling in inflammatory bowel diseases: a pilot study. Bosn. J. Basic Med. Sci. 20, 262-270.
34 Van Nuenen, M. H. M. C., Venema, K., Van Der Woude, J. C. J. and Kuipers, E. J. (2004) The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig. Dis. Sci. 49, 485-491.   DOI
35 Wang, R., Gu, X., Dai, W., Ye, J., Lu, F., Chai, Y., Fan, G., Gonzalez, F. J., Duan, G. and Qi, Y. (2016) A lipidomics investigation into the intervention of celastrol in experimental colitis. Mol. Biosyst. 12, 1436-1444.   DOI
36 Jansson, J., Willing, B., Lucio, M., Fekete, A., Dicksved, J., Halfvarson, J., Tysk, C. and Schmitt-Kopplin, P. (2009) Metabolomics reveals metabolic biomarkers of Crohn's disease. PLoS ONE 4, e6386.   DOI
37 Furlan, A. D., Pennick, V., Bombardier, C. and Van Tulder, M. (2009) 2009 Updated method guidelines for systematic reviews in the cochrane back review group. Spine 34, 1929-1941.   DOI
38 Han, X. (2016) Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 12, 668-679.   DOI
39 Horta, D., Moreno-Torres, M., Ramirez-Lazaro, M. J., Lario, S., Kuligowski, J., Sanjuan-Herraez, J. D., Quintas, G., Villoria, A. and Calvet, X. (2021) Analysis of the association between fatigue and the plasma lipidomic profile of inflammatory bowel disease patients. J. Proteome Res. 20, 381-392.   DOI
40 Huan, T., Palermo, A., Ivanisevic, J., Rinehart, D., Edler, D., Phommavongsay, T., Benton, H. P., Guijas, C., Domingo-Almenara, X., Warth, B. and Siuzdak, G. (2018) Autonomous multimodal metabolomics data integration for comprehensive pathway analysis and systems biology. Anal. Chem. 90, 8396-8403.   DOI
41 Lai, Y., Xue, J., Liu, C. W., Gao, B., Chi, L., Tu, P., Lu, K. and Ru, H. (2019) Serum metabolomics identifies altered bioenergetics, signaling cascades in parallel with exposome markers in Crohn's disease. Molecules 24, 449.   DOI
42 Lee, Y., Choo, J., Kim, S. J., Heo, G., Pothoulakis, C., Kim, Y. H. and Im, E. (2017) Analysis of endogenous lipids during intestinal wound healing. PLoS ONE 12, e0183028.   DOI
43 Liebisch, G., Vizcaino, J. A., Kofeler, H., Trotzmuller, M., Griffiths, W. J., Schmitz, G., Spener, F. and Wakelam, M. J. O. (2013) Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 54, 1523-1530.   DOI
44 Guan, S., Jia, B., Chao, K., Zhu, X., Tang, J., Li, M., Wu, L., Xing, L., Liu, K., Zhang, L., Wang, X., Gao, X. and Huang, M. (2020) UPLCQTOF-MS-based plasma lipidomic profiling reveals biomarkers for inflammatory bowel disease diagnosis. J. Proteome Res. 19, 600-609.   DOI
45 Sewell, G. W., Hannun, Y. A., Han, X., Koster, G., Bielawski, J., Goss, V., Smith, P. J., Rahman, F. Z., Vega, R., Bloom, S. L., Walker, A. P., Postle, A. D. and Segal, A. W. (2012) Lipidomic profiling in Crohn's disease: abnormalities in phosphatidylinositols, with preservation of ceramide, phosphatidylcholine and phosphatidylserine composition. Int. J. Biochem. Cell Biol. 44, 1839-1846.   DOI
46 Espaillat, M. P., Snider, A. J., Qiu, Z., Channer, B., Coant, N., Schuchman, E. H., Kew, R. R., Sheridan, B. S., Hannun, Y. A. and Obeid, L. M. (2018) Loss of acid ceramidase in myeloid cells suppresses intestinal neutrophil recruitment. FASEB J. 32, 2339-2353.   DOI
47 Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., Spener, F., Van Meer, G., Wakelam, M. J. O. and Dennis, E. A. (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 50, S9-S14.   DOI
48 Fan, F., Mundra, P. A., Fang, L., Galvin, A., Moore, X. L., Weir, J. M., Wong, G., White, D. A., Chin-Dusting, J., Sparrow, M. P., Meikle, P. J. and Dart, A. M. (2015) Lipidomic profiling in inflammatory bowel disease: comparison between ulcerative colitis and Crohn's disease. Inflamm. Bowel Dis. 21, 1511-1518.   DOI
49 Gallagher, K., Catesson, A., Griffin, J. L., Holmes, E. and Williams, H. R. T. (2021) Metabolomic analysis in inflammatory bowel disease: a systematic review. J. Crohns Colitis 15, 813-826.   DOI