DOI QR코드

DOI QR Code

Interleukin-32 in Inflammatory Autoimmune Diseases

  • Kim, Soohyun (Department of Biomedical Sciences and Technology, Konkuk University)
  • Received : 2014.03.31
  • Accepted : 2014.04.30
  • Published : 2014.06.30

Abstract

Interleukin-32 (IL-32) is a cytokine inducing crucial inflammatory cytokines such as tumor necrosis factor-${\alpha}(TNF{\alpha})$ and IL-6 and its expression is elevated in various inflammatory autoimmune diseases, certain cancers, as well as viral infections. IL-32 gene was first cloned from activated T cells, however IL-32 expression was also found in other immune cells and non-immune cells. IL-32 gene was identified in most mammals except rodents. It is transcribed as multiple-spliced variants in the absence of a specific activity of each isoform. IL-32 has been studied mostly in clinical fields such as infection, autoimmune, cancer, vascular disease, and pulmonary diseases. It is difficult to investigate the precise role of IL-32 in vivo due to the absence of IL-32 gene in mouse. The lack of mouse IL-32 gene restricts in vivo studies and restrains further development of IL-32 research in clinical applications although IL-32 new cytokine getting a spotlight as an immune regulatory molecule processing important roles in autoimmune, infection, and cancer. In this review, we discuss the regulation and function of IL-32 in inflammatory bowel diseases and rheumatoid arthritis.

Keywords

References

  1. Netea, M. G., T. Azam, G. Ferwerda, S. E. Girardin, M. Walsh, J. S. Park, E. Abraham, J. M. Kim, D. Y. Yoon, C. A. Dinarello, and S. H. Kim. 2005. IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc. Natl. Acad. Sci. USA 102: 16309-16314. https://doi.org/10.1073/pnas.0508237102
  2. Imaeda, H., A. Andoh, T. Aomatsu, R. Osaki, S. Bamba, O. Inatomi, T. Shimizu, and Y. Fujiyama. 2011. A new isoform of interleukin-32 suppresses IL-8 mRNA expression in the intestinal epithelial cell line HT-29. Mol. Med. Rep. 4: 483-487.
  3. Shioya, M., A. Nishida, Y. Yagi, A. Ogawa, T. Tsujikawa, S. Kim-Mitsuyama, A. Takayanagi, N. Shimizu, Y. Fujiyama, and A. Andoh. 2007. Epithelial overexpression of interleukin-32alpha in inflammatory bowel disease. Clin. Exp. Immunol. 149: 480-486. https://doi.org/10.1111/j.1365-2249.2007.03439.x
  4. Ciccia, F., A. Rizzo, A. Accardo-Palumbo, A. Giardina, M. Bombardieri, G. Guggino, S. Taverna, G. D. Leo, R. Alessandro, and G. Triolo. 2012. Increased expression of interleukin-32 in the inflamed ileum of ankylosing spondylitis patients. Rheumatology (Oxford) 51: 1966-1972. https://doi.org/10.1093/rheumatology/kes170
  5. Andoh, A., Y. Yagi, M. Shioya, A. Nishida, T. Tsujikawa, and Y. Fujiyama. 2008. Mucosal cytokine network in inflammatory bowel disease. World J. Gastroenterol. 14: 5154-5161. https://doi.org/10.3748/wjg.14.5154
  6. Fantini, M. C., G. Monteleone, and T. T. Macdonald. 2007. New players in the cytokine orchestra of inflammatory bowel disease. Inflamm. Bowel Dis. 13: 1419-1423. https://doi.org/10.1002/ibd.20212
  7. Felaco, P., M. L. Castellani, M. A. De Lutiis, M. Felaco, F. Pandolfi, V. Salini, D. De Amicis, J. Vecchiet, S. Tete, C. Ciampoli, F. Conti, G. Cerulli, A. Caraffa, P. Antinolfi, C. Cuccurullo, A. Perrella, T. C. Theoharides, P. Conti, E. Toniato, D. Kempuraj, and Y. B. Shaik. 2009. IL-32: a newly-discovered proinflammatory cytokine. J. Biol. Regul. Homeost. Agents 23: 141-147.
  8. Choi, J., S. Bae, J. Hong, S. Ryoo, H. Jhun, K. Hong, D. Yoon, S. Lee, E. Her, W. Choi, J. Kim, T. Azam, C. A. Dinarello, and S. Kim. 2010. Paradoxical effects of constitutive human IL-32{gamma} in transgenic mice during experimental colitis. Proc. Natl. Acad. Sci. USA 107: 21082-21086. https://doi.org/10.1073/pnas.1015418107
  9. Netea, M. G., E. C. Lewis, T. Azam, L. A. Joosten, J. Jaekal, S. Y. Bae, C. A. Dinarello, and S. H. Kim. 2008. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proc. Natl. Acad. Sci. USA 105: 3515-3520. https://doi.org/10.1073/pnas.0712381105
  10. Choi, J. D., S. Y. Bae, J. W. Hong, T. Azam, C. A. Dinarello, E. Her, W. S. Choi, B. K. Kim, C. K. Lee, D. Y. Yoon, S. J. Kim, and S. H. Kim. 2009. Identification of the most active interleukin-32 isoform. Immunology 126: 535-542. https://doi.org/10.1111/j.1365-2567.2008.02917.x
  11. Kim, Y. G., C. K. Lee, J. S. Oh, S. H. Kim, K. A. Kim, and B. Yoo. 2010. Effect of interleukin-32gamma on differentiation of osteoclasts from $CD14^+$ monocytes. Arthritis Rheum. 62: 515-523.
  12. Moon, Y. M., B. Y. Yoon, Y. M. Her, H. J. Oh, J. S. Lee, K. W. Kim, S. Y. Lee, Y. J. Woo, K. S. Park, S. H. Park, H. Y. Kim, and M. L. Cho. 2012. IL-32 and IL-17 interact and have the potential to aggravate osteoclastogenesis in rheumatoid arthritis. Arthritis Res. Ther. 14: R246. https://doi.org/10.1186/ar4089
  13. Xu, W. D., M. Zhang, C. C. Feng, X. K. Yang, H. F. Pan, and D. Q. Ye. 2013. IL-32 with potential insights into rheumatoid arthritis. Clin. Immunol. 147: 89-94. https://doi.org/10.1016/j.clim.2013.02.021
  14. Joosten, L. A., M. G. Netea, S. H. Kim, D. Y. Yoon, B. Oppers-Walgreen, T. R. Radstake, P. Barrera, F. A. van de Loo, C. A. Dinarello, and W. B. van den Berg. 2006. IL-32, a proinflammatory cytokine in rheumatoid arthritis. Proc. Natl. Acad Sci. USA 103: 3298-3303. https://doi.org/10.1073/pnas.0511233103
  15. Gui, M., H. Zhang, K. Zhong, Y. Li, J. Sun, and L. Wang. 2013. Clinical significance of interleukin-32 expression in patients with rheumatoid arthritis. Asian Pac. J. Allergy Immunol. 31: 73-78.
  16. Jeong, H. J., H. A. Oh, B. J. Lee, and H. M. Kim. 2014. Inhibition of IL-32 and TSLP production through the attenuation of caspase-1 activation in an animal model of allergic rhinitis by Naju Jjok (Polygonum tinctorium). Int. J. Mol. Med. 33: 142-150. https://doi.org/10.3892/ijmm.2013.1548
  17. Cagnard, N., F. Letourneur, A. Essabbani, V. Devauchelle, S. Mistou, A. Rapinat, C. Decraene, C. Fournier, and G. Chiocchia. 2005. Interleukin-32, CCL2, PF4F1 and GFD10 are the only cytokine/chemokine genes differentially expressed by in vitro cultured rheumatoid and osteoarthritis fibroblast-like synoviocytes. Eur. Cytokine Netw. 16: 289-292.
  18. Zivojinovic, S. M., N. N. Pejnovic, M. N. Sefik-Bukilica, L. V. Kovacevic, I. I. Soldatovic, and N. S. Damjanov. 2012. Tumor necrosis factor blockade differentially affects innate inflammatory and Th17 cytokines in rheumatoid arthritis. J. Rheumatol. 39: 18-21. https://doi.org/10.3899/jrheum.110697
  19. Heinhuis, B., M. I. Koenders, P. L. van Riel, F. A. van de Loo, C. A. Dinarello, M. G. Netea, W. B. van den Berg, and L. A. Joosten. 2011. Tumour necrosis factor alpha-driven IL-32 expression in rheumatoid arthritis synovial tissue amplifies an inflammatory cascade. Ann. Rheum. Dis. 70: 660-667. https://doi.org/10.1136/ard.2010.139196
  20. Heinhuis, B., M. I. Koenders, F. A. van de Loo, M. G. Netea, W. B. van den Berg, and L. A. Joosten. 2011. Inflammation-dependent secretion and splicing of IL-32{gamma} in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 108: 4962-4967. https://doi.org/10.1073/pnas.1016005108
  21. Alsaleh, G., L. Sparsa, E. Chatelus, M. Ehlinger, J. E. Gottenberg, D. Wachsmann, and J. Sibilia. 2010. Innate immunity triggers IL-32 expression by fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Res. Ther. 12: R135. https://doi.org/10.1186/ar3073
  22. Kim, S. H., S. Y. Han, T. Azam, D. Y. Yoon, and C. A. Dinarello. 2005. Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 22: 131-142.

Cited by

  1. Cytokine-Modulating Strategies and Newer Cytokine Targets for Arthritis Therapy vol.16, pp.1, 2014, https://doi.org/10.3390/ijms16010887
  2. Important Role of the IL-32 Inflammatory Network in the Host Response against Viral Infection vol.7, pp.6, 2014, https://doi.org/10.3390/v7062762
  3. IL-32B is the predominant isoform expressed under inflammatory conditions in vitro and in COPD vol.1, pp.1, 2014, https://doi.org/10.1186/s40749-015-0006-x
  4. IL-32: A Novel Pluripotent Inflammatory Interleukin, towards Gastric Inflammation, Gastric Cancer, and Chronic Rhino Sinusitis vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/8413768
  5. Interleukin-32 Gamma as a New Face in Inflammatory Bone Diseases vol.24, pp.1, 2017, https://doi.org/10.4078/jrd.2017.24.1.14
  6. Interleukin-32 promotes lipid accumulation through inhibition of cholesterol efflux vol.14, pp.2, 2014, https://doi.org/10.3892/etm.2017.4596
  7. Interleukin-32 Gamma Stimulates Bone Formation by Increasing miR-29a in Osteoblastic Cells and Prevents the Development of Osteoporosis vol.7, pp.None, 2017, https://doi.org/10.1038/srep40240
  8. Interleukin-32: its role in asthma and potential as a therapeutic agent vol.19, pp.None, 2018, https://doi.org/10.1186/s12931-018-0832-x
  9. IL-32γ attenuates airway fibrosis by modulating the integrin-FAK signaling pathway in fibroblasts vol.19, pp.None, 2014, https://doi.org/10.1186/s12931-018-0863-3
  10. Integrating the skin and blood transcriptomes and serum proteome in hidradenitis suppurativa reveals complement dysregulation and a plasma cell signature vol.13, pp.9, 2014, https://doi.org/10.1371/journal.pone.0203672
  11. The proinflammatory cytokine TNFα induces DNA demethylation-dependent and -independent activation of interleukin-32 expression vol.294, pp.17, 2014, https://doi.org/10.1074/jbc.ra118.006255
  12. Interleukin-32 in Infection, Inflammation and Cancer Biology vol.21, pp.1, 2014, https://doi.org/10.1515/sjecr-2016-0085
  13. Overt IL-32 isoform expression at intestinal level during HIV-1 infection is negatively regulated by IL-17A vol.35, pp.12, 2014, https://doi.org/10.1097/qad.0000000000002972
  14. Molecular interactions and functions of IL‐32 vol.109, pp.1, 2021, https://doi.org/10.1002/jlb.3mr0620-550r
  15. Genetic polymorphisms associated with polycystic ovary syndrome among Iranian women vol.153, pp.1, 2014, https://doi.org/10.1002/ijgo.13534