• Title/Summary/Keyword: Inflammatory cell

Search Result 3,704, Processing Time 0.027 seconds

Dietary supplementation of piperine improves innate immunity, growth performance, feed utilization and intestinal morphology of red seabream (Pagrus major)

  • Mirasha Hasanthi;G.H.T. Malintha;Kwan-Sik Yun;Kyeong-Jun Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.12
    • /
    • pp.726-737
    • /
    • 2023
  • Piperine, the main bioactive component of black pepper (Piper nigrum Linn.), has anti-inflammatory, antifungal, and antibacterial properties. This study evaluated the supplemental effects of piperine or black pepper on innate immunity, growth, feed utilization efficiency, and intestinal morphology in red seabream (Pagrus major). Six experimental diets were formulated, supplementing piperine at 0.0, 0.25, 0.5, 1.0, and 2.0 g/kg levels (Con, P25, P50, P100, and P200) or 1.0 g/kg black pepper (BP100). Juvenile fish (7.6 ± 0.1 g) were randomly stocked into 18 circular tanks (220 L), including 30 fish per tank. Each diet was randomly assigned to triplicate groups, and the feeding trial was conducted for 8 weeks. The results showed that final body weight, specific growth rate, weight gain, and feed utilization efficiency were significantly improved (p < 0.05) when piperine was supplemented into diets at 0.25-2.0 g/kg levels compared to the Con group. Compared to the Con diet, condition factor was significantly increased (p < 0.05) in fish fed with dietary piperine at 0.25-2.0 g/kg or BP100 diet. Serum myeloperoxidase activity was increased (p < 0.05) in P25 and P100 groups and antiprotease activity was increased (p < 0.05) in P100 group compared to the Con group. Significantly higher (p < 0.05) lysozyme activity was observed in P50, P100, P200 and BP100 groups, while total immunoglobulin level was increased in P50, P100 and BP100 groups than Con group. Superoxide dismutase activity was increased (p < 0.05) by dietary piperine at 0.25-2.0 g/kg levels and BP100 diet compared to Con diet. Plasma cholesterol was significantly lower (p < 0.05) in fish fed with piperine (0.5-2.0 g/kg) or BP100 compared to the Con diet. Compared to the Con diet significantly longer (p < 0.05) intestinal villi were observed in fish fed with piperine at 0.25-1.0 g/kg levels, and higher goblet cell count was observed in P25 and BP100 groups. Dietary inclusion of piperine would be a potent immunostimulant in fish diet and the optimum supplementation level would be 0.25-1.0 g/kg.

Do changes in inflammatory markers predict hepatocellular carcinoma recurrence and survival after liver transplantation?

  • Lucas Jose Caram;Francisco Calderon;Esteban Masino;Victoria Ardiles;Ezequiel Mauro;Leila Haddad;Juan Pekolj;Jimena Vicens;Adrian Gadano;Eduardo de Santibanes;Martin de Santibanes
    • Annals of Hepato-Biliary-Pancreatic Surgery
    • /
    • v.26 no.1
    • /
    • pp.40-46
    • /
    • 2022
  • Backgrounds/Aims: The role of inflammation in malignant cell proliferation has been well described. High values of platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) as markers of systemic inflammation have shown associations with unfavorable long-term outcomes. The purpose of this study was to determine values of NLR and PLR evaluated prior to and after surgery and their associations with mortality and recurrence rates of liver transplant patients with hepatocellular carcinoma (HCC). Methods: A total of 105 patients with HCC who underwent orthotopic liver transplantation (OLT) were retrospectively reviewed. NLR and PLR values were obtained from complete blood counts prior to and after surgery. Overall survival (OS) and recurrence-free survival (RFS) in relation with delta NLR and PLR were estimated. Results: Serum alpha-fetoprotein levels > 100 ng/mL (p = 0.014) and lymphovascular emboli in the specimen (p = 0.048) were identified to be significant predictors of RFS. Child-Pugh score (p = 0.016) was found to be an independent factor associated with poorer OS. An increasing delta PLR was associated with worse RFS, although it showed no significant association with OS. Conclusions: The analysis of PLR as a continuous variable may predict recurrence outcomes in patients undergoing OLT for HCC. It is more representative than isolated values.

Green Synthesis of Nanoceria and the Mechanism Behind Their Antibacterial Activity (나노세리아의 친환경 합성과 항균 활성 메커니즘)

  • Maheshkumar Prakash Patil;Yong-Suk Lee;Mi Jeong Jo;Yong Bae Seo;Gun-Do Kim
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.647-655
    • /
    • 2024
  • The synthesis of cerium oxide nanoparticles (nanoceria, CeO2) has received significant attention across scientific and technological disciplines in the last decade. This article explores an overview of the green synthesis method and the antibacterial activity of nanoceria. The utilization of biological materials, such as plants and microorganisms, in the synthesis of nanoceria, has gained attention as an ecofriendly approach. Plants are rich in phytochemicals, including alkaloids, flavonoids, phenols, proteins, and other nutritious components. Likewise, microorganisms generate bioactive metabolites, pigments, enzymes, proteins, acids, and antibiotics. The phytochemicals and metabolites are involved in the reduction of metal salt into nanoceria and provide stability to synthesized nanoparticles. Nanoceria synthesis using plants and microorganisms is facile and ecofriendly, and synthesized nanoceria are biocompatible. Many biomedical applications of nanoceria have been reported, including those that are anticancer, anti-inflammatory, larvicidal, enzyme inhibiting, antibiofilm, and antimicrobial. However, in this review, we focused on and described in detail the antibacterial potential of nanoceria. The antibacterial activity of nanoceria occurs due to excessive reactive oxygen species generation, the impairment of the cell membrane, and the inhibition of cellular mechanisms. Ultimately, this review's primary goal is to provide readers with a logical understanding of the significant achievements of nanoceria as a cutting-edge therapeutic agent for treating a range of microbial pathogens and combating other diseases.

Aromadendrin Inhibits Lipopolysaccharide-Induced Inflammation in BEAS-2B Cells and Lungs of Mice

  • Juhyun Lee;Ji-Won Park;Jinseon Choi;Seok Han Yun;Bong Hyo Rhee;Hyeon Jeong Jeong;Hyueyun Kim;Kihoon Lee;Kyung-Seop Ahn;Hye-Gwang Jeong;Jae-Won Lee
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.546-555
    • /
    • 2024
  • Aromadendrin is a phenolic compound with various biological effects such as anti-inflammatory properties. However, its protective effects against acute lung injury (ALI) remain unclear. Therefore, this study aimed to explore the ameliorative effects of aromadendrin in an experimental model of lipopolysaccharide (LPS)-induced ALI. In vitro analysis revealed a notable increase in the levels of cytokine/chemokine formation, nuclear factor kappa B (NF-κB) activation, and myeloid differentiation primary response 88 (MyD88)/toll-like receptor (TLR4) expression in LPS-stimulated BEAS-2B lung epithelial cell lines that was ameliorated by aromadendrin pretreatment. In LPS-induced ALI mice, the remarkable upregulation of immune cells and IL-1β/IL-6/TNF-α levels in the bronchoalveolar lavage fluid and inducible nitric oxide synthase/cyclooxygenase-2/CD68 expression in lung was decreased by the oral administration of aromadendrin. Histological analysis revealed the presence of cells in the lungs of ALI mice, which was alleviated by aromadendrin. In addition, aromadendrin ameliorated lung edema. This in vivo effect of aromadendrin was accompanied by its inhibitory effect on LPS-induced NF-κB activation, MyD88/TLR4 expression, and signal transducer and activator of transcription 3 activation. Furthermore, aromadendrin increased the expression of heme oxygenase-1/ NAD(P)H quinone dehydrogenase 1 in the lungs of ALI mice. In summary, the in vitro and in vivo studies demonstrated that aromadendrin ameliorated endotoxin-induced pulmonary inflammation by suppressing cytokine formation and NF-κB activation, suggesting that aromadendrin could be a useful adjuvant in the treatment of ALI.

Honey and levodopa comparably preserved substantia nigra pars compacta neurons through the modulation of nuclear factor erythroid 2-related factor 2 signaling pathway in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease model

  • Fatimo Ajoke Sulaimon;Ruqayyah Yetunde Ibiyeye;Aminu Imam;Aboyeji Lukuman Oyewole;Abubakar Lekan Imam;Monsur Shehu;Sikiru Abayomi Biliaminu;Risikat Eniola Kadir;Gabriel Olaiya Omotoso;Moyosore Salihu Ajao
    • Anatomy and Cell Biology
    • /
    • v.57 no.3
    • /
    • pp.431-445
    • /
    • 2024
  • Parkinson's disease (PD) affects about 8.5 million individuals worldwide. Oxidative and inflammatory cascades are implicated in the neurological sequels, that are mostly unresolved in PD treatments. However, proper nutrition offers one of the most effective and least costly ways to decrease the burden of many diseases and their associated risk factors. Moreover, prevention may be the best response to the progressive nature of PD, thus, the therapeutic novelty of honey and levodopa may be prospective. This study aimed to investigate the neuroprotective role of honey and levodopa against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced oxidative stress. Fifty-four adult male Swiss mice were divided into control and PD model groups of 27 mice. Each third of the control mice either received phosphate buffered saline, honey, or levodopa for 21 days. However, each third of the PD models was either pretreated with honey and levodopa or not pretreated. Behavioral studies and euthanasia were conducted 2 and 8 days after MPTP administration respectively. The result showed that there were significantly (P<0.05) higher motor activities in the PD models pretreated with the honey as well as levodopa. furthermore, the pretreatments protected the midbrain against the chromatolysis and astrogliosis induced by MPTP. The expression of antioxidant markers (glutathione [GSH] and nuclear factor erythroid 2-related factor 2 [Nrf2]) was also significantly upregulated in the pretreated PD models. It is thus concluded that honey and levodopa comparably protected the substantia nigra pars compacta neurons against oxidative stress by modulating the Nrf2 signaling molecule thereby increasing GSH level to prevent MPTP-induced oxidative stress.

Dietary ellagic acid blocks inflammation-associated atherosclerotic plaque formation in cholesterol-fed apoE-deficient mice

  • Sin-Hye Park;Min-Kyung Kang;Dong Yeon Kim;Soon Sung Lim;Young-Hee Kang
    • Nutrition Research and Practice
    • /
    • v.18 no.5
    • /
    • pp.617-632
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Atherosclerosis particularly due to high circulating level of low-density lipoprotein is a major cause of cardiovascular diseases. Ellagic acid is a natural polyphenolic compound rich in pomegranates and berries. Our previous study showed that ellagic acid improved functionality of reverse cholesterol transport in murine model of atherosclerosis. The aim of this study is to investigate whether ellagic acid inhibited inflammation-associated atherosclerotic plaque formation in cholesterol-fed apolipoprotein E (apoE)-knockout (KO) mice. MATERIALS/METHODS: Wild type mice and apoE-KO mice were fed a cholesterol-rich Paigen diet for 10 weeks to induce severe atherosclerosis. Concurrently, 10 mg/kg ellagic acid was orally administered to the apoE-KO mice. Plaque lesion formation and lipid deposition were examined by staining with hematoxylin and eosin, Sudan IV and oil red O. RESULTS: The plasma leukocyte profile of cholesterol-fed mice was not altered by apoE deficiency. Oral administration of ellagic acid attenuated plaque lesion formation and lipid deposition in the aorta tree of apoE-KO mice. Ellagic acid substantially reduced plasma levels of soluble vascular cell adhesion molecule and interferon-γ in Paigen diet-fed apoE-KO mice. When 10 mg/kg ellagic acid was administered to cholesterol-fed apoE-KO mice, the levels of CD68 and MCP-1 were strongly reduced in aorta vessels. The protein expression level of nitric oxide synthase-2 (NOS2) in the aorta was highly enhanced by supplementation of ellagic acid to apoE-KO mice, but the expression level of heme oxygenase-1 (HO-1) in the aorta was reduced. Furthermore, ellagic acid diminished the increased aorta expression of the inflammatory adhesion molecules in cholesterol-fed apoE-KO mice. The treatment of ellagic acid inhibited the scavenger receptor-B1 expression in the aorta of apoE-KO mice, while the cholesterol efflux-related transporters were not significantly changed. CONCLUSION: These results suggest that ellagic acid may be an atheroprotective compound by attenuating apoE deficiency-induced vascular inflammation and reducing atherosclerotic plaque lesion formation.

Anti-inflammatory Effects of Pentoxifylline and Neutrophil Elastase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury In Vitro (In Vitro 내독소 유도성 급성 폐손상에서 Pentoxifylline과 Neutrophil Elastase Inhibitor의 항염효과)

  • Kim, Young-Kyoon;Kim, Seung-Joon;Park, Yong-Keun;Kim, Seok-Chan;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak;Kim, Sang-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.6
    • /
    • pp.691-702
    • /
    • 2000
  • Background : Acute lung injury (ALI) is a commonly encountered respiratory disease and its prognosis is poor when the treatment is not provided promptly and properly. However no specific pharmacologic treatment is currently available for ALI, although recently several supportive drugs have been under scrutiny. We studied anti-inflammatory effects of pentoxifylline (PF), a methylated xanthine, and ONO-5046, a synthetic neutrophil elastase inhibitor on lipopolysaccharide (LPS)-induced ALI in vitro. Methods : To establish an in vitro model of LPS-induced ALI, primary rat alveolar macrophages and peripheral neutrophils in various ratios (1:0, 5:1, 1:1, 1:5, 0:1) were co-cultured with transformed rat alveolar epithelial cells (L2 cell line) or vascular endothelial cells (IP2-E4 cell line) under LPS stimulation. Each experiment was divided into five groups-control, LPS, LPS+PF, LPS+ONO, and LPS+PF+ONO. We compared LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils in various ratios, and the resultant cytotoxicity on L2 cells or IP2-E4 cells between groups. In addition we also compared the productions of tumor necrosis factor (TNF)-$\alpha$ interleukin (IL)-$1{\beta}$, monocyte chemotactic protein(MCP)-1, IL-6, and IL-10 as well as mRNA expressions of TNF-$\alpha$ inducible nitric oxide synthetase(iNOS), and MCP-1 from LPS-stimulated primary rat alveolar macrophages between groups. Results : (1) PF and ONO-5046 in each or both showed a trend to suppress LPS-induced superoxide anion productions from primary rat alveolar macrophages and peripheral neutrophils regardless of their ratio, except for the LPS+PF+ONO group with the 1:5 ratio, although statistical significance was limited to a few selected experimental conditions. (2) PF and ONO-5046 in each or both showed a trend to prevent IP2-E4 cells from LPS-induced cytotoxicity by primary rat alveolar macrophages and peripheral neutrophils regardless their ratio, although statistical significance was limited to a few selected experimental conditions. the effects of PF and/or ONO-5046 on LPS-induced L2 cell cytotoxicity varied according to experimental conditions. (3) PF showed a trend to inhibit LPS-induced productions of INF-$\alpha$ MCP-1, and IL-10 from primary rat alveolar macrophages. ONO-5046 alone didnot affect the LPS-induced productions of proinflammatory cytokines from primary rat alveolar macrophages but the combination of PF and ONO-5046 showed a trend to suppress LPS-induced productions of INF-$\alpha$ and IL-10 PF and ONO-5046 in each or both showed a trend to increase LPS-induced IL-$\beta$ and IL-6 productions from primary rat alveolar macrophages. (4) PF and ONO-5046 in each or both showed a trend to attenuate LPS-induced mRNA expressions of TNF-$\alpha$ and MCP-1 from primary rat alveolar macrophages but at the same time showed a trend increase iNOS mRNA expression. Conclusion : These results suggest that PF and ONO-5046 may play a role in attenuating inflammation in LPS-induced ALI and that further study is needed to use these drugs as a new supportive therapeutic strategy for ALI.

  • PDF

Bulnesia Sarmienti Aqueous Extract Inhibits Inflammation in LPS-Stimulated RAW 264.7 Cells (RAW 264.7세포에서 lipopolysaccharide로 유발시킨 염증반응에 대한 Bulnesia sarmienti 열수추출물의 억제효과)

  • Cheon, Yong-Pil;Mollah, Mohammad Lalmoddin;Park, Chang-Ho;Hong, Joo-Heon;Lee, Gee-Dong;Song, Jae-Chan;Kim, Kil-Soo
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.479-485
    • /
    • 2009
  • Bulnesia sarmienti (BS), a traditional South American herbal medicine native to Gran Chaco, has been used to treat various human ailments. We investigated the cytotoxic activities and the inhibitory effects of BS bark extract(0, 50, 100 and $200\;{\mu}g/\;mL$) on the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), cyclooxygenase (COX) and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) in the lipopolysaccharide (LPS) (100 ng/ml)-stimulated murine macrophage cell line RAW264.7. The levels of NO, COX, PGE2 production and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) were measured by ELISA kit. Cell viability, as measured by the MTT assay, showed that BS extract had no significant cytotoxicity in RAW264.7 cells. BS extract significantly inhibited the LPS-induced NO, $PGE_2$ and COX production accompanied by an attenuation of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ formation in macrophages. These results suggest that BS extract has potential as an herbal medicine for the treatment of inflammatory diseases.

A STUDY ON THE EXTRACELLULAR MATRIX IN THE ARTIFICIALLY CHEATED CLEFT LIP WOUND HEALING OF RABBIT FETUSES (토끼 태자에 형성시킨 구순열상의 치유과정에서 세포외기질 분포에 관한 연구)

  • Yang, Won-Sik;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.1-15
    • /
    • 1998
  • Adult wound healing is accompanied with inflammation and eventual scar formation, whereas fetal wounds heal rapidly by mesenchymal proliferation without significant inflammatory cell participation and with minimal or no scar formation. The cellular mechanisms underlying these differing forms of wound healing are unknown but the extracellualr matrix through its effects on cell function, may play a key role. Therefore the purpose of this study is to investigate the spatial and temporal deposition of several component of extracellular matrix, which are known to be involved with scar formation, in the artificially created cleft lip wound healing of fetuses. The author had undergone hysterotomy and created cleft lip-like defects on fetuses of New Zealand White Rabbit in mid-third trimester(24 days). Fetuses were divided into the repaired group, the unrepaired group and the sham-operated control group. At 1, 2, 3, 5, 7 days after procedure, fetuses were obtained by Caeserem section. After documenting the viability of fetuses, they were photographed to compare size and facial morphology and sectioned for histological examination by H & E stain and spatial and temporal deposition of collagen typeI, III, IV, V and fibronectit laminin by immunohistochemical method. The findings are summarized as follows 1. There were lack of inflammation in the repaired and the unrepaired group during experimental periods. 2. The reepithelialization of the unrepaired group was slower than that of the repaired group. 3. Collagen I, III, V were found from post-op. third day. There were no difference of distribution in the control, the repaired and the unrepaired group. Collagen types I, III, V were present in all groups with restoration of the normal collagen pattern in the fetus. This implies that lack of scarring in fetal wounds is due to the difference of collagen organization pattern within wound and not simply lack of collagen formation. 4. Collagen IV was slightly increased at post-op. third day and decreased after post-op. fifth day. Eventually there were no differences in the control, the repaired and the unrepaired group. Lminin was found at post-op. fifth day and maintained staining density until post-op. seventh day. There were no differences in the control, the repaired and the unrepaired group. According to staining of laminin and collagen type IV in epithelial basement membrane, formation of epithelial basement membrane was not completed until reepithelialization was finished. 5. According to staining of laminin and collagen type IV, there were no increase of neovascularity in the repaired and the unrepaired group. 6. Fibronectin was increased until post-op. third day at fibrin clot, wound base and margin and decreased after post-op. fifth day. Eventually, there were no differences in the control, the repaired and the unrepaired group. So it implies fibronectin plays a role as provisional matrix for fetal wound healing.

  • PDF

Enhancing the Effects of Zerumbone on THP-1 Cell Activation (단핵구세포주의 활성에 미치는 Zerumbone의 영향)

  • Lee, Min Ho;Kim, Sa Hyun;Ryu, Sung Ryul;Lee, Pyeongjae;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.