
Green Synthesis of Nanoceria and the Mechanism Behind Their Antibacterial
Activity

Maheshkumar Prakash Patil
1
, Yong-Suk Lee

2
, Mi Jeong Jo

2
, Yong Bae Seo

2
and Gun-Do Kim

2,3
*

1Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Korea 
2Department of Microbiology, Pukyong National University, Busan 48513, Korea 
3School of Marine and Fisheries Life Science, The Graduate School of Pukyong National University, Busan 48513, Korea

Received July 31, 2024 /Revised September 10, 2024 /Accepted September 13, 2024

The synthesis of cerium oxide nanoparticles (nanoceria, CeO2) has received significant attention across 
scientific and technological disciplines in the last decade. This article explores an overview of the 
green synthesis method and the antibacterial activity of nanoceria. The utilization of biological materi-
als, such as plants and microorganisms, in the synthesis of nanoceria, has gained attention as an 
ecofriendly approach. Plants are rich in phytochemicals, including alkaloids, flavonoids, phenols, pro-
teins, and other nutritious components. Likewise, microorganisms generate bioactive metabolites, pig-
ments, enzymes, proteins, acids, and antibiotics. The phytochemicals and metabolites are involved 
in the reduction of metal salt into nanoceria and provide stability to synthesized nanoparticles. 
Nanoceria synthesis using plants and microorganisms is facile and ecofriendly, and synthesized nano-
ceria are biocompatible. Many biomedical applications of nanoceria have been reported, including 
those that are anticancer, anti-inflammatory, larvicidal, enzyme inhibiting, antibiofilm, and antimicro-
bial. However, in this review, we focused on and described in detail the antibacterial potential of 
nanoceria. The antibacterial activity of nanoceria occurs due to excessive reactive oxygen species 
generation, the impairment of the cell membrane, and the inhibition of cellular mechanisms. Ultimately, 
this review’s primary goal is to provide readers with a logical understanding of the significant achieve-
ments of nanoceria as a cutting-edge therapeutic agent for treating a range of microbial pathogens 
and combating other diseases.
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Introduction

Recent years have witnessed a substantial progression in 
the field of nanotechnology and considered among one of 
the leading research avenues. Nanoparticles (NPs) have vari-
ous applications in the different fields, including environ-
mental, industrial, and medical [44, 45, 54, 62]. NPs includ-
ing a wide range of materials with different physical and 
chemical properties, including metals (gold (Au), iron (Fe), 
silver (Ag)), metal oxides (CeO2, titanium oxide (TiO2), Zinc 
oxide (ZnO2)), quantum dots (CdSe, cadmium selenide), and 

carbon nanotubes (single walled and multi-walled) [28, 46]. 
These NPs also present different morphologies such as oval, 
spherical, cube, triangular, rod, tubes and prisms. NPs are 
defined as particles that possess a size variation of 1 to 100 
nm. NPs are distinguished from bulk materials by their small 
size, different shapes, higher surface area-to-volume ratio, 
and their properties [18, 31]. These NPs have unique physico- 
chemical properties and have been utilized in the various 
fields of biology, chemistry and physics [1, 19, 53].

Among different NPs, nanoceria have been exploited a lot 
because they are biocompatible, have a unique surface chem-
istry, and can switch between the oxidation states Ce3+ and 
Ce4+. The relative amount of cerium ions (Ce3+, Ce4+) varies 
with particle size. In general, when particle size decreases, 
the percentage of Ce3+ ions rise [69]. Ce4+ is a potent oxidant, 
whereas the Ce3+ is very resistant to oxidation and will only 
react with extremely powerful oxidants [42]. Cerium oxide 
nanoparticles are unique in that they may function as both 
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Fig. 1. General applications of nanoceria.

Table 1. Nanoceria synthesis and their biomedical applications

Synthesis 
method Synthesis using/route Shape Size (nm) Applications References

Biological

Datura metel
Stachys japonica
Pouteria campechiana

Aquilegia pubiflora

Spherical
Spherical
Granular, agglomerated

Spherical

5‒15
21

11.46‒15.59

28

Antioxidant
Antioxidant, anti-diabetic
Antioxidant, anticancer, 

antibacterial, sensor
Biocompatibility, anti-diabetic, 

anticancer, antioxidant

[68]
[55]
[43]

[27]

Chemical

-
Sol-gel

-
NH4OH precipitation
Micro-emulsion

-
-

Cuboidal
Spherical
Cubic, triangular
Star, nanorod, polygonal
Spherical

-
-

8‒20
8‒18
9.52
3‒5

7‒10
6, 12
<25

Anticancer
Cytotoxicity
Antioxidant, anti-genotoxic
Angiogenesis
Anti-inflammatory
Neuroprotective
Radioprotective

[37]
[29]
[52]
[16]
[8]

[56]
[66]

an oxidation and reduction catalyst, depending on the reaction 
conditions. These actions result from the rapid transition of 
the oxidation state from Ce4+ to Ce3+. The cerium atom has 
the ability to easily and drastically adjust its electronic config-
uration to best fit its immediate environment [60]. It is mostly 
used to make sensors, energy storage cells, catalysts, elec-
tronics, and medicines (Fig. 1). NPs are mainly produced in 
two ways: from the top-down and the bottom-up [2]. Cutting 
or breaking large objects into small NPs is part of the top- 
down method. The bottom-up method makes small particles 
by assembling them atom by atom, molecule by molecule, 
and cluster by cluster. The different methods have been devel-
oped for the NPs synthesis including physical, chemical, and 
biological [26, 50].

Physical and chemical methods for synthesizing nanoceria 
including solution precipitation, hydrothermal, sol-gel, spray 
pyrolysis, ball milling, thermal decomposition, and solvother-
mal, thermal hydrolysis [17, 23, 24, 51, 70] methods are re-
quiring an extensive amount of energy and toxic chemicals, 
in addition to producing hazardous byproducts; therefore, re-
searchers are currently concentrating on the biological meth-
od as an environmentally friendly alternative. The utilization 
of plant extracts and microorganisms in the synthesis of nano-
ceria results in the production of nanoceria that are biocom-
patible and free of toxic byproducts. It is believed that bio-
molecules, including enzymes and phytochemicals (phenols, 
amines, ketones, flavonoids, and terpenoids), play a role in 
the process of reducing and stabilizing bulk salt into NPs 
[3, 41, 48, 50]. As of now, numerous approaches for the syn-
thesis of nanoceria and their biomedical implementations 
have been described (Table 1). Among other biomedical ap-
plications, antimicrobial application is certainly the most 
exploited. In the past, studies have documented the anti-
microbial activity of NPs that is dependent on their size and 
shape [4, 57]. The mechanisms underlying this activity in-
clude disruptions of cell wall ion transportation channels, in-
activation of enzymes and proteins, DNA damage, and inter-
ruption of cell membrane permeability [41, 44]. However, 
additional research is required to comprehensively clarify the 
entire mechanism of action. This review focuses on the syn-
thesis of nanoceria using microorganisms and plants, as well 
as the underlying mechanism that explains nanoceria's anti-
microbial activity. 
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Fig. 2. Schematic diagram of the nanoceria biosynthesis process.

Synthesis of nanoceria

The biological method for synthesis of nanoceria has been 
used as an alternative to the traditional methods (hydrother-
mal methods, thermal hydrolysis, spray pyrolysis, ball milling 
etc.) because it is an ecofriendly, inexpensive, and non-toxic 
method that uses plant extracts and microorganisms as a natu-
ral resource for reducing metal salt into NPs while also pro-
viding stability to the synthesized NPs. The schematic repre-
sentation of the nanoceria production process using a bio-
logical method is shown in Fig. 2. This technique involves 
the preparation of extracts from plants, microbial cells, or 
microbial cell-free supernatant, which can later be used as 
a reducing and stabilizing agent. The extract is combined with 
metal salt and processed to several factors, including temper-
ature, pH, salt or extract ratio, and reaction time, to produce 
the desired shape, size, and optimum production of nanoceria. 
Once the reaction completes, the solution needs to be proc-
essed by either centrifugation or filtering to separate the 
nanoceria. Next, the separated nanoceria undergo calcination 
at various temperatures, which may be carried out in either 
an oven or a furnace. Ultimately, the calcined nanoceria are 
analyzed using various analytical methods to understand the 
characteristics of nanoceria. These manufactured nanoceria 
are then used for different applications.

The synthesis of nanoceria via a biological approach has 
been described, using various plant parts extracts such as leaf, 
seed, flower, rhizome, and fruit, as well as microorganisms 
including bacteria and fungus (Table 2). Plant extracts contain 
various phytochemicals that act as reducing agents [41, 46]. 

This is one of the main reasons why plant extract-mediated 
nanoceria synthesis is more reported than those synthesized 
using microorganisms. Additionally, preparing plant extracts 
is much simpler than using microorganisms [44, 46]. Use 
of microorganisms for nanoceria requires additional steps 
such as isolation, identification, growth optimization, and 
separation of synthesized nanoparticles from microbial cells 
through cell disruption and centrifugation etc. [21, 39, 45, 49]. 

Use of plant materials

Aqueous extracts of Gloriosa superba and Azadirachta 
indica were found to generate nanoceria with sizes of 5 and 
10 to 15 nm, respectively. Transmission Electron Microscopy 
(TEM) was used to identify their morphology, and X-ray dif-
fraction (XRD) spectroscopy confirmed their surface features 
[7, 59]. The production of Hibiscus sabdariffa flower extract 
involved boiling the petals in distilled water and then mixing 
it with cerium (Ⅲ) nitrate hexahydrate for nanoceria synthe-
sis. The obtained nanoceria has been dried and calcined at 
a high temperature, resulting in the formation of crystalline, 
spherical nanoceria with a diameter of 3.9 nm. The study 
using Flourier Transform Infrared Spectroscopy (FTIR) 
showed that phytochemical functional groups played a role 
in the formation process of the nanoceria [64]. The formation 
of metal oxide group, that is CeO2 were confirmed in multiple 
studies by using FTIR analysis which indicated by Ce-O bond 
[10, 14, 59]. Similarly, Cassia glauca petals extract were used 
for nanoceria synthesis; synthesized spherical and irregular 
shaped nanoceria has been reported for the applications in-
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Table 2. Nanoceria synthesis using plant extracts and microorganisms

Biological synthesis
Shape Size (nm) Applications References

Name Part

Plants
  Acorus calamus
  Azadirachta indica
  Cassia angustifolia
  Cassia glauca

  Calotropis procera
  Cydonia oblonga
  Gloriosa superba
  Hibiscus sabdariffa
  Lemon grass
  Manilkara zapota

  Musa sapientum
  Zingiber officinale

Microorganisms
  Aspergillus niger
  Bacillus subtilis
  Curvularia lunata
  Fusarium solani
  Humicola sp.

Rhizome
Leaf
Seed
Petal

Flower
Seed
Leaf

Flower
Grass

Fruit peel

Fruit peel
Rhizome

Fungi
Bacteria

Fungi
Fungi
Fungi

Spherical, pseudo-spherical
Spherical
Spherical

Spherical, irregular

Spherical
Agglomerated

Spherical
Spheres

Aggregated
Spherical

Spherical
Spherical-agglomerated

Spherical
Spherical
Spherical
Spherical

Spherical, polydisperse

5‒40
10‒15
10‒12
3.20

21
9‒11

5
~3.9

10‒40
15±2

4‒13
3.73, 3.81

5‒20
8.022
5‒20

20‒30
12‒20

Antibiofilm
Dye degradation
Dye degradation
Enzyme inhibition, antioxidant, 

antimicrobial
Antibacterial, photocatalytic
Cytotoxicity, dye degradation 
Antibacterial

-
-

Photocatalytic, antimicrobial, 
antidiabetic

Radioprotective, photocatalytic
Enzyme inhibition, antioxidant, 

antimicrobial

Antibacterial, larvicidal
Antioxidant
Antibacterial
Antibacterial, antibiofilm

-

[5]
[59]
[6]

[14]

[40]
[20]
[7]

[64]
[35]
[10]

[36]
[9]

[21]

[49]
[39]
[65]
[32]

cluding enzyme (α-amylase, urease, and lipase) inhibition, an-
tioxidant (free radical scavenging), and antibacterial activity 
against human pathogens [14]. Spherical and pseudo-spher-
ical nanoceria produced from rhizome extract with sizes rang-
ing from 5 to 40 nm showed antibiofilm efficacy by inhibiting 
bacterial exopolysaccharide formation [5]. 

Use of microorganisms

Microorganisms have been shown to produce nanoceria us-
ing cell-free supernatants or cell biomass of bacteria and fun-
gus, similar to plant extract synthesis (Table 2). Microorgan-
isms are a significant source of secondary metabolites, and 
they contribute to producing and stabilizing NPs [45]. Micro-
bial metabolites such as proteins, amino acids, and enzymes 
contribute significantly to metal salt reduction and nanoceria 
formation. Cell-free supernatant of bacteria Bacillus subtilis 
yielded spherical nanoceria with a size of 8 nm [49], and 
cell-free supernatant of fungi Aspergillus niger and Fusarium 
solani were reported to yield spherical nanoceria of size 5 
to 20 and 20 to 30 nm, respectively, and has antibacterial 
activity against human pathogens [21, 65]. In contrast, the 
fungus Hemicola sp. cell (mycelia) mass was employed for 
nanoceria synthesis; mycelial mass suspended with metal salt 

(cerium (Ⅲ) nitrate hexahydrate) and incubated in shaking 
incubator, and the resulting extracellularly synthesized nano-
ceria was spherical, polydisperse, and 12 to 20 nm in size 
and crystalline nature was confirmed by XRD [32]. Despite 
all of these uses, the microbial technique of nanoceria syn-
thesis has certain drawbacks, including a significant risk of 
pathogenicity, contamination, laboratory culture, growth con-
dition management, and so on. However, it has a lot of prom-
ise in the realm of nanotechnology and has the potential to 
be a major route in nanomedicine, but it has yet to be 
explored. Furthermore, these biogenic NPs may be used for 
disease management, drug development, and for drug deliv-
ery.

Characterization of nanoceria

Currently, several methods are used to characterize 
nanoceria. Nevertheless, the main sign of nanoceria formation 
is the change in color of the reaction, which is confirmed 
by spotting a peak at a certain wavelength using UV-visible 
spectrophotometry [36, 39, 68]. This shape and size of syn-
thesized nanoceria was observed by scanning electron micro-
scopy [9, 20], and transmission electron microscopy [6, 32]. 
Raman spectroscopy applied to identify the phases and phase 
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Table 3. Antibacterial effect of nanoceria on pathogenic bacteria

Gram-positive Gram-negative References

Bacillus subtilis, Micrococcus luteus,
Staphylococcus aureus, Staphylococcus epidermidis,
Streptococcus pneumoniae

Enterobacter aerogens, Escherichia coli,
Klebshiella pneumoniae, Proteus vulgaris,
Pseudomonas aeruginosa, Salmonella setubal,
Salmonella typhi, Shigella dysenteriae

[4, 7, 10, 14, 21, 
27, 39, 48, 57, 65]

transition and size determination of nanoceria [39, 48]. The 
analysis of the interaction between biomolecules from a plant 
extract or microbial supernatant, which leads to the develop-
ment of nanoceria and formation of metal oxide bond, is de-
termined using FT-IR [3, 20, 43]. The crystalline nature and 
elemental composition of nanoceria were determined using 
XRD analysis [5, 35] and energy dispersive X-ray analysis 
[48, 65], respectively. These are the few methods listed here 
that are generally used in the characterization of nanoceria.

Antibacterial effect of nanoceria

The bacteriostatic properties of cerium were first detected 
at the end of 19th century and started its use into the topical 
antiseptics in veterinary and human medicine [38]. Scientists 
conducted research in the mid-twentieth century using cerium 
Ⅲ) chloride, cerium (Ⅲ) nitrate, and cerium (Ⅳ) sulphate 
against a panel of 39 bacterial species across 16 genera, in-
cluding Gram-positive Staphylococcus aureus and Gram-neg-
ative Pseudomonas aeruginosa; they observed bacteriostatic 
effects of cerium nitrate against all tested bacteria, as well 
as pH-dependent effects (more effective at slightly acidic pH 
values). Pseudomonas was the most sensitive, followed by 
Escherichia and Salmonella, and the least susceptible species 
was S. aureus to cerium nitrate [13]. A further study using 
cerium nitrate on E. coli were conducted and found that ce-
rium uptake into the cell cytoplasm and inhibition of cellular 
respiration, oxygen uptake and glucose metabolism. The cell 
wall remains intact but knob-like protrusions were observed, 
which suggest a disruption of cell wall [61]. 

Nanotechnology-based therapeutics have recently been 
used in disease diagnosis, therapy, and the development of 
new drugs. For example, the antibacterial potential of nano-
materials has been extensively investigated and shown sig-
nificant results [11, 44-46, 54]. Several studies have demon-
strated that the shape, size and composition of nanomaterials 
surface characterizes their antibacterial properties, similar like 
other metallic and metal-oxide nanoparticles [11, 44, 46, 47]. 
Many studies have shown that nanoceria has antibacterial 
properties against both Gram-positive and Gram-negative bac-

teria (Table 3), although the exact mechanism of bacteria-kill-
ing is not entirely known. In general, nanoceria has the most 
potent antibacterial effect against Gram-negative bacteria (E. 
coli), which might be attributed to Gram-positive bacteria 
having a thick layer of peptidoglycan that is difficult to pene-
trate nanoceria. However, several authors reported opposite 
findings.

The adsorption of metal oxide nanoparticles onto the bacte-
rial cell wall can takes place due to the electrostatic attraction 
between the negatively charged cell wall of bacteria and pos-
itively charged nanoceria (Ce4+) [58, 63] where Ce4+ reduced 
to Ce3+, resulting in oxidative stress on the membrane lipids 
and protein [63]. Due to this interactions, nanoceria interact 
with cell membrane and changes membrane permeability 
which results in membrane impermeability, protein denatura-
tion, and alteration in cell multiplication, and eventually cause 
bacterial cell death [7, 12, 22, 65]. The alteration of gene 
expression due to nanoceria interaction cause impairment of 
cellular respiration. Compared to nanoceria exposed and un-
exposed E. coli, level of succinate dehydrogenase and cyto-
chrome b terminal oxidase gene expression decreased in 
nanoceria exposed cells which indicates nanoceria attacks 
electron flow and bacterial respiration [47]. It is reported 
that nanoceria mostly kill bacteria by producing a significant 
amount of ROS such as superoxide (O2

−), hydroxyl radicals 
(•OH), and hydrogen peroxides (H2O2). ROS are highly re-
active and unstable compounds that can strip electrons from 
cellular macromolecules (nucleic acids, proteins, polysaccha-
rides, lipids and other biological molecules), thereby causing 
them to become dysfunctional, eventually killing and decom-
posing bacteria [25, 34, 61, 67]. In addition, Ce (Ⅳ) ions 
have the potential to catalyze the hydrolysis of a DNA oligom-
er into fragments, which may lead to death of bacteria [34]. 

Few factors are affects the antibacterial activity of nano-
ceria is surrounding pH cause changes in nanoceria surface 
charges, which can affect the nanoceria particles adsorption 
affinity towards bacteria [47], shape and size of nanoceria 
[15, 57], surface chemistry [33], and surface coating [30] con-
centration [7].
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Challenges and future prospects

The biological approach to synthesizing nanoceria is 
cost-effective, simple, and environmentally benign. Biogenic 
nanoceria are preferable for biomedical applications because 
they are free from hazardous chemicals and their shape and 
size may be altered or regulated throughout the biogenic proc-
ess of nanoceria production. However, there are still sig-
nificant issues that need to be addressed in the field of bio-
genic nanoceria. These challenges include ensuring the stabil-
ity of synthesized nanoparticles, preventing the development 
of nanoclusters, addressing the aggregation of nanomaterials, 
and gaining a thorough understanding of the toxicity of these 
materials on animals and the environment. Ongoing research 
is being conducted on the biogenic production of nanoceria. 
Each day, new studies are being added to the realm of bio-
medical and medical science, exploring the potential use of 
NPs for human well-being. The development of nanotechnol-
ogy and its use in clinical procedures necessitated thorough 
characterization, regulatory requirements, and appropriate 
techniques for detecting their toxicity. Nanoceria's antibacte-
rial activities have been recognized for more than a century. 
To further the translational potential of nanoceria-related anti-
bacterial materials, improved standardization, more system-
atic investigations, and long-term effects observation are re-
quired to increase knowledge of nanoceria's cytotoxicity and 
processes. This review sheds light on the mechanism of nano-
ceria as antibacterial agents, which could help to open up 
new possibilities for their future usage in biomedical fields.
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초록：나노세리아의 친환경 합성과 항균 활성 메커니즘

파틸 마헤슈쿠마르 프라카쉬1․이용석2․조미정2․서용배2․김군도2,3*

(1부경대학교 산학협력단, 2부경대학교 미생물학과, 3부경대학교 해양수산생명과학부)

세륨 산화물 나노입자(CeO2), 즉 나노세리아의 합성은 지난 10년 동안 다양한 과학 기술 분야에서 상당

한 주목을 받아왔다. 특히 이 논문에서는 환경 친화적 합성 방법과 나노세리아의 항균 활성에 대한 집중적

으로 다루고자 한다. 우선, 나노세리아 합성에 있어 식물 및 미생물과 같은 생물학적 소재를 사용하는 

방식이 환경 친화적 접근으로 주목을 받고 있다. 예를 들어, 식물은 알칼로이드, 플라보노이드, 페놀, 단백

질 및 기타 영양 성분을 포함한 파이토케미컬을 풍부하게 함유하고 있다. 한편, 미생물은 생리 활성 대사산

물, 색소, 효소, 단백질, 산 및 항생제를 생성한다. 따라서, 이러한 파이토케미컬과 대사산물은 금속염을 

나노세리아로 환원시키는 데 기여할 뿐만 아니라, 합성된 나노 입자에 안정성을 높여준다. 또한, 식물과 

미생물을 사용한 나노세리아 합성은 단순하면서도 환경 친화적이라는 장점이 있으며, 결과적으로 합성된 

나노세리아는 생체 친화적 특성을 지닌다. 나노세리아는 항암, 항염증, 살충제, 효소 저해, 항생물막 및 

항균 작용 등 다양한 생물의학적 응용이 보고되었지만, 이 논문에서는 특히 나노세리아의 항균능력에 중점

을 두어 설명하고자 한다. 특히, 나노세리아의 항균 활성은 과도한 반응성 산소종(ROS) 생성, 세포막 손상, 
세포 메커니즘 억제를 통해 발현된다. 결국, 이 리뷰의 주요 목적은 다양한 미생물 병원체를 치료하고 

다른 질병을 극복하는 데 나노세리아가 중요한 치료제로서 지닌 잠재력에 대해 독자들이 더 깊이 이해할 

수 있도록 돕는 것이다. 
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