• Title/Summary/Keyword: Infill

Search Result 320, Processing Time 0.028 seconds

Blast behavior of steel infill panels with various thickness and stiffener arrangement

  • Lotfi, Saeid;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.587-600
    • /
    • 2018
  • Infill panel is the first element of a building subjected to blast loading activating its out-of-plane behavior. If the infill panel does not have enough ductility against the loading, it breaks and gets damaged before load transfer and energy dissipation. As steel infill panel has appropriate ductility before fracture, it can be used as an alternative to typical infill panels under blast loading. Also, it plays a pivotal role in maintaining sensitive main parts against blast loading. Concerning enough ductility of the infill panel out-of-plane behavior, the impact force enters the horizontal diaphragm and is distributed among the lateral elements. This article investigates the behavior of steel infill panels with different thicknesses and stiffeners. In order to precisely study steel infill panels, different ranges of blast loading are used and maximum displacement of steel infill under such various blast loading is studied. In this research, finite element analyses including geometric and material nonlinearities are used for optimization of the steel plate thickness and stiffener arrangement to obtain more efficient design for its better out-of-plane behavior. The results indicate that this type of infill with out-of-plane behavior shows a proper ductility especially in severe blast loadings. In the blasts with high intensity, maximum displacement of infill is more sensitive to change in the thickness of plate rather the change in number of stiffeners such that increasing the number of stiffeners and the plate thickness of infill panel would decrease energy dissipation by 20 and 77% respectively. The ductile behavior of steel infill panels shows that using infill panels with less thickness has more effect on energy dissipation. According to this study, the infill panel with 5 mm thickness works better if the criterion of steel infill panel design is the reduction of transmitted impulse to main structure. For example in steel infill panels with 5 stiffeners and blast loading with the reflected pressure of 375 kPa and duration of 50 milliseconds, the transmitted impulse has decreased from 41206 N.Sec in 20 mm infill to 37898 N.Sec in 5 mm infill panel.

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

A Study on Tensile Strength Dependent on Variation of Infill Pattern and Density of PLA+ Material Using 3D Printing (3D 프린팅을 이용한 P LA+ 소재의 채움 패턴 및 밀도 변화에 따른 인장강도 연구)

  • Na, D.H.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.281-289
    • /
    • 2022
  • Presently, 3D printers manufactured by material extrusion are economical and easy to use, so they are being used in various fields. However, this study conducted a tensile test on the infill pattern and density of the PLA+ material, due to the limitations of long printing time as well as low mechanical strength. The infill area for the infill density change was measured, using a vision-measuring machine for four infill patterns (concentric, zigzag, honeycomb, and cross) in which the nozzle path was the same for each layer. The tensile strength/weight[MPa/g] and tensile strength/printing time[MPa/min] of the tensile specimens were analyzed. In this study, efficient infill density and patterns are suggested, for cost reduction and productivity improvement. Consequently, it was confirmed that the infill area and infill percentage of the four patterns, were not constant according to the infill pattern. And the tensile strength of the infill density 40% of the honeycomb pattern and infill density 20% of the cross pattern, tended to highly consider the weight and printing time. Honeycomb and cross patterns could reduce the weight of the tensile specimen by 19.11%, 28.07%, as well as the printing time by 29.56%, 52.25%. Tensile strength was high in the order of concentric, zigzag, honeycomb, and cross patterns, considering the weight and printing time.

A Study of the Variable Infill System for Skeleton/Infill Housing in Japan (일본 SI집합주택 가변인필 시스템의 구성체계 분석)

  • Yi, Yong-Kyu
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • Skeleton/Infill Housing in Japan was developed in 1979 in order to provide a solution to the modem problem of the need to flexibly respond to diversified demands for housing, and to establish a social basis of housing as public housing complexes are realized. In this system, the "skeleton" like building structure, which has a social nature, is separated from "infill" such as interior furnishings, which have more individuality, The public body was the unified supplier of the skeleton, and the private sector satisfied each household's needs in tenus of infill using a demander participation approach, Today however, Skeleton/Infill Housing is required to solve an entirely new housing problem, necessitating a dramatic change of infill. For this reason, this study aims to clear the infill within the system and propose a more flexible system which can provide appropriate information to improve the infill.

A Study on Tensile Strength Dependent on Variation of Output Condition of the X-shape Infill Pattern using FFF-type 3D Printing (융합 필라멘트 제조 방식의 3D 프린팅을 이용한 X자 형상 내부 채움 패턴의 출력 옵션 변화에 따른 인장강도 연구)

  • D. H. Na;H. J. Kim;Y. H. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2024
  • Plastic, the main material of FFF-type 3D printing, exhibits lower strength compared to metal. research aimed at increasing strength is needed for use in various industrial fields. This study analyzed three X-shape infill patterns(grid, lines, zigzag) with similar internal lattice structure. Moreover, tensile test considering weight and printing time was conducted based on the infill line multiplier and infill overlap percentage. The three X-shape infill patterns(grid, lines, zigzag) showed differences in nozzle paths, material usage and printing time. When infill line multiplier increased, there was a proportional increase in tensile strength/weight and tensile strength/printing time. In terms of infill overlap percentage, the grid pattern at 50% and the zigzag and lines patterns at 75% demonstrated the most efficient performance.

Development of Mobile Device of the Infill Modular Construction System (인필 모듈러 건설시스템의 이동장치 개발)

  • Kim, Chang-Han;Jung, Chan-Woo;Kim, Hyeong-Su;Hwang, Hyun-Jun;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.163-164
    • /
    • 2012
  • Recently new construction system, the Infill Modular Construction System, is being emphasized depending on the industrialized technology introduction and the needs of high-rise housing. In order to applicate the Infill Modular Construction System and activate the domestic market, development of insufficient element technologies against the advanced technologies should be preceded and mobile device development of Infill Unit Module which is differentiated from the existing modular construction systems should be needed urgently. As advanced research for the activation of the Infill Modular Construction System, this research aims to develop Infill Unit Module's mobile device. This is expected to improve the constructability of Infill Unit Module. In addition development of mobile device considering weight of Infill Unit Module and construction errors are being planned.

  • PDF

A Preliminary Study on the Establishment of Long-Life Housing Infill Information System (장수명주택 인필 정보시스템 구축에 관한 기초 연구)

  • Jung, Yoon-Hye;Hwang, EunKyoung;Kim, Eun-Young
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.51-59
    • /
    • 2017
  • Purpose: This study aims to set up the classification system for providing infill information and draw detailed infill information required by suppliers, thereby promoting the revitalization of long-life housing and utilizing such information as preliminary data for establishing web system, on which infill information required by users in the long-life housing design process are available. Method: For the method of study, the infill information classification system and detailed information were drawn through the analysis of existing building material information systems; and the survey targeting working-level personnel was carried out in order to verify the drawn information system. The results of this study can be summarized as follows. First, the hierarchical classification system (scheme) was selected by quoting the classification system by material type as infill type, after analyzing existing DB information systems and drawing the hierarchical classification system for infill. Second, the comparative analysis between infill was available to users for the detailed infill information of long-life housing, and the essential information and general information were selected for differentiating information. Results: First, the hierarchical classification system (scheme) was selected by quoting the classification system by material type as infill type, after analyzing existing DB information systems and drawing the hierarchical classification system for infill. Second, the comparative analysis between infill was available to users for the detailed infill information of long-life housing, and the essential information and general information were selected for differentiating information. Third, only approximately 30% of the survey respondents recognized the infill of long-life housing, but they did not recognize its difference from existing building materials. Fourth, through the analysis of paths to obtain infill information of long-life housing, it was confirmed that infill information was obtained mostly through books and research papers regarding long-life housing, followed by the existing information systems. The significance of the study lies in that it is differentiated from the previous information system as the information system specialized in the infill of long-life housing was established, and can be used as a measure to revitalize long-life housing market.

Seismic assessment of R/C residential buildings with infill walls in Turkey

  • Korkmaz, Kasim Armagan;Kayhan, Ali Haydar;Ucar, Taner
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • In 1999 Marmara and 2011 Van earthquakes in Turkey, majority of the existing buildings either sustained severe damage or collapsed. These buildings include masonry infill walls in both the interior and exterior R/C frames. The material of the masonry infill is the main variant, ranging from natural stones to bricks and blocks. It is demanding to design these buildings for satisfactory structural behavior. In general, masonry infill walls are considered by its weights not by interaction between walls and frames. In this study, R/C buildings with infill walls are considered in terms of structural behavior. Therefore, 5 and 8-story R/C buildings are regarded as the representative models in the analyses. The R/C representative buildings, both with and without infill walls were analyzed to determine the effects of structural behavior change. The differences in earthquake behavior of these representative buildings were investigated to determine the effects of infill walls leading structural capacity. First, pushover curves of the representative buildings were sketched. Aftermath, time history analyses were carried out to define the displacement demands. Finally, fragility analyses were performed. Throughout the fragility analyses, probabilistic seismic assessment for R/C building structures both with and without infill walls were provided. In this study, besides the deterministic assessment methodology, a probabilistic approach was followed to define structural effect of infill walls under seismic loads.

A Study on Tensile Strength Considering Weight and Printing Time of 3D Infill Patterns using 3D Printing (3D 프린팅을 이용한 3차원 채움 패턴의 중량과 출력시간을 고려한 인장강도 연구)

  • D. H. Na;H. J. Kim;H. J. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.255-267
    • /
    • 2023
  • Recently, 3D printing using a material extrusion method is used in various fields. Since plastic material has lower strength than steel, research to increase the strength is continuously being conducted. This study investigates the lattice structure for additive manufacturing of six 3D infill patterns (octet, quarter cubic, cubic, cubic subdivision, triangles and cross 3D) which consist of tetragons, hexagonal trusses, equilateral triangles and cross shapes. Consequently, in the tensile strength considering the weight and printing time, octet, quarter cubic, cubic and triangles patterns tended to increase linearly as the infill density increased, except for the infill density of 20%. However, the tensile strength/weight performed better than the infill density of 100% when the cubic subdivision pattern had the infill density of 20% and the cross 3D pattern had the infill density of 40%. Considering the weight and printing time, the infill patterns of high tensile strength were octet, quarter cubic, cubic, cubic subdivision, triangles and cross 3D order.

RCC frames with ferrocement and fiber reinforced concrete infill panels under reverse cyclic loading

  • Ganesan, N.;Indira, P.V.;Irshad, P.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • An experimental investigation was carried out to study the strength and behavior of reinforced cement concrete (RCC) frames with ferrocement and fiber reinforced concrete infill panel. Seven numbers of $1/4^{th}$ scaled down model of one bay-three storey frames were tested under reverse cyclic loading. Ferrocement infilled frames and fiber reinforced concrete infilled frames with varying volume fraction of reinforcement in infill panels viz; 0.20%, 0.30%, and 0.40% were tested and compared with the bare frame. The experimental results indicate that the strength, stiffness and energy dissipation capacity of infilled frames were considerably improved when compared with the bare frame. In the case of infilled frames with equal volume fraction of reinforcement in infill panels, the strength and stiffness of frames with fiber reinforced concrete infill panels were slightly higher than those with ferrocement infill panels. Increase in volume fraction of reinforcement in the infill panels exhibited only marginal improvement in the strength and behavior of the infilled frames.